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Abstract

Multiple criteria analysis (MCA) is a framework for evaluating decision options against multiple criteria. Numerous
techniques for solving an MCA problem are available. This paper applies MCA to six water management decision prob-
lems. The MCA methods tested include weighted summation, range of value, PROMTHEE II, Evamix and compromise
programming. We show that different MCA methods were in strong agreement with high correlations amongst rankings.
In the few cases where strong disagreement between MCA methods did occur it was due to presence of mixed ordinal-car-
dinal data in the evaluation matrix. The results suggest that whilst selection of the MCA technique is important more
emphasis is needed on the initial structuring of the decision problem, which involves choosing criteria and decision options.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Water resource management decisions are typi-
cally guided by multiple objectives measured in a
range of financial and non-financial units (Gough
and Ward, 1996). Often the outcomes are highly
intangible and may include items such as biodiver-
sity, recreation, scenery and human health. These
characteristics of water planning decisions make
multiple criteria analysis (MCA) an attractive
approach. MCA can be defined as a grouping of
techniques for evaluating decision options against
multiple criteria measured in different units (RAC,
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1992; Voogd, 1983). A decision option is an action,
or project, which contributes to the decision maker’s
objectives. In discrete choice MCA there are a finite
set of decision options being appraised. Weights can
be assigned to criteria to represent their relative
importance. Many researchers have found that
MCA provides an effective tool for water manage-
ment by adding structure, auditability, transparency
and rigour to decisions (Dunning et al., 2000; Jou-
bert et al., 2003; Flug et al., 2000; Nayak and
Panda, 2001).

The variety of techniques for ‘solving’ an MCA
problem has grown rapidly over recent decades.
Weistroffer et al. (2005) review 79 MCA software
packages which implement a variety of MCA meth-
ods. Recent review papers identify hundreds of
MCA techniques for ranking or scoring options,
.
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weighting criteria and transforming criteria into
commensurate units (Figueira et al., 2005; Pohekar
and Ramachandran, 2004; Hayashi, 2000). The
opportunities for constructing new methods by
combining or modifying existing ones are practi-
cally limitless. This can create uncertainty in the
results of MCA, as noted some time ago by Gershon
(1984, p. 247):

‘‘. . .if different techniques [for MCA] can yield
conflicting results for the same problem, then
the appropriateness of any of the techniques is
placed into question.’’

Analysts considering the use of MCA in water re-
source planning decisions are faced with the formi-
dable challenge of deciding which methods, or
combinations of methods, are best suited to their
problem. Whilst in operation, Australia’s Resource
Assessment Commission reviewed MCA and ob-
served that (RAC, 1992, p. 23):

‘‘. . .a large amount of effort has been expended in
developing [MCA] evaluation methods but rela-
tively little effort has been devoted to evaluating
the performance of those methods or determining
which method should be used in what
circumstance.’’

This quandary persists in contemporary MCA
application and has intensified due to the rapid in-
crease in MCA methods over recent decades. Guide-
lines have been proposed to help choose the most
appropriate MCA technique by Guitouni and Mar-
tel (1998).

In this study six recent water resource manage-
ment decision problems are selected from the litera-
ture and used to assess the impact of using one
MCA method over another. An MCA evaluation
matrix (EM) is obtained for each decision problem.
An EM contains a set of criteria, a set of decision
options, a set of criteria weights and performance
measures. A performance measure is the raw score
for a decision option against a criterion. Five
MCA methods are applied to each of the six EMs
to attain a ranking of the decision options. The sim-
ilarity of rank output resulting from different MCA
methods is assessed using rank correlation
coefficients.

The question of how different MCA methods cre-
ate different results has been examined in previous
studies. Some examples come from Gershon and
Duckstein (1983); Howard (1991); Ozelkan and
Duckstein (1996); Eder et al. (1997) and Raju
et al. (2000). One study by Tecle (1992) uses MCA
itself to evaluate 15 MCA methods.

This paper provides new evidence by applying
MCA to multiple EMs as opposed to a single EM
for water management. The results in this paper
are not problem specific and apply to numerous real
water management problems published in the past
decade from several countries. We show that
MCA results do differ, though typically only
slightly, under different ranking techniques. This
has implications on deciding where to focus effort
when applying MCA. Often it is far more important
to focus effort on structuring the decision problem
(involving identifying decision options, criteria and
criteria weights) than trying to decide which MCA
technique to apply.

2. Water resource planning and management

decisions

Water resource planning and management is a
sub-field of natural resource management in which
decisions are particularly amenable to MCA
(Romero and Rehman, 1987). Decisions in water
management are characterised by multiple objec-
tives and multiple stakeholder groups. Outcome
measures are in multiple financial and non-financial
units. Decision makers are increasingly looking
beyond conventional benefit cost analysis towards
techniques of MCA that can handle a multi-objec-
tive decision environment (Prato, 1999; Joubert
et al., 1997; Bana e Costa et al., 2004). There is a
need for transparent, robust and auditable analyses.

Some of common types of water management
decisions being supported with MCA techniques
include:

1. Selection of alternative water supply and storage
infrastructure options. Eder et al. (1997) use
MCA to select locations and design options for
hydro-electric power plants on the Danube River
in Austria.

2. Selection of water restoration or enhancement
projects in light of constrained budgets. Al-Rash-
dan et al. (1999) prioritise projects designed to
improve the environmental quality of the Jordan
River using MCA.

3. Allocating a fixed water resource amongst com-
peting uses. Flug et al. (2000) use MCA to select
water flow options for Glen Canyon Dam in Col-
orado providing for recreation, biodiversity, fish-
ing and cultural uses.
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4. Selecting water management policies for an entire
city or region. Joubert et al. (2003) use MCA to
help choose water supply augmentation and
demand management policies for the city of Cape
Town in South Africa.

The multi-objective nature of water management
decisions makes it an application-area suitable for
comparative study of MCA techniques. However,
the results of this paper are likely to have relevance
to other fields of natural resource management and
decision making.

3. Generic definition of a multiple criteria analysis

model

An MCA model aims to rank or score a finite
number of decision options based on a set of evalu-
ation criteria. The MCA model can be represented
by a matrix X of n decision options and m criteria
(Hipel, 1992).

X ¼

x1;1 � � � xn;1

..

. . .
. ..

.

x1;m � � � xn;m

2
664

3
775: ð1Þ

In this study we refer to this as an evaluation matrix
(EM). The EM may contain a mix of ordinal and
cardinal data. The raw performance score for deci-
sion option i with respect to criterion j is denoted
by xi,j. For a multi-criteria evaluation task to be
warranted we require at least two criteria and two
decision options (n P 2 and m P 2). The impor-
tance of each criterion is given in a one dimensional
weights vector W containing m weights, where wj

denotes the weight assigned to the jth criterion:

W ¼ w1 . . . wm: ð2Þ
Both X and W may contain either ordinal or cardi-
nal level data, or a mix of both. Different MCA
techniques are available to handle different levels
of qualitative and quantitative measurement. The
MCA algorithms aim to:

(a) Define the function ri = f1(X,W), R =
{r1 . . . rn} and provide a rank order1 of the
decision options and/or;
1 In this paper a value of 1 is assigned to the best performing
option and n to the worst performing option.
(b) Define the function ui = f2(X,W),U =
{u1 . . . un} and provide a utility score for each
decision option.

Values for ri and ui can be used by the decision
maker to: (a) select a single decision option; (b)
select a subset of options; (c) determine the perfor-
mance ordering of all options; and/or (d) determine
the relative magnitude of performance for options.
In this study the utility score (ui) is used to rank
the decision options. The utility score is a measure
of the overall benefit or worth of a decision option
relative to other options in the selection set.

Under some conditions options and criteria
should always be excluded from an MCA model.
These conditions are strict dominance and non-dis-
criminating criteria. Strict dominance exists when
one decision option is outperformed by another
against all criteria (Yakowitz et al., 1993). Most
MCA methods require each criterion to be trans-
formed into a unitless value score, so they may be
combined to produce the utility score (ui). In this
study we define vi,j as the value to the decision
maker of the raw performance score xi,j. There are
many ways of computing vi,j and in this study we
use linear transformations:

vi;j ¼
xi;j �minn

i¼1ðxi;jÞ
maxn

i¼1ðxi;jÞ �minn
i¼1ðxi;jÞ

ð3Þ

if a higher value for xi,jrepresents better per-
formance

vi;j ¼
maxn

i¼1ðxi;jÞ � xi;j

maxn
i¼1ðxi;jÞ �minn

i¼1ðxi;jÞ
ð4Þ

if a lower value for xi,j represents better
performance

max
n

i¼1
ðxi;jÞ ¼ the maximum value of xi;j

for i ¼ 1; . . . n;

and

min
n

i¼1
ðxi;jÞ ¼ the minimum value of xi;j

for i ¼ 1; . . . n:

Decision option i can be considered strictly domi-
nated by i 0 if

vi0 ;j P vi;j 8j ¼ 1; . . . ;m and

vi0 ;j > vi;j for at least one j ¼ 1; . . . ;m: ð5Þ
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An MCA model requires at least two non domi-
nated decision options. In discrete choice problems,
where the aim is to select one preferred option, all
dominated options should be excluded from the
selection set.

Non-discriminating criteria do not provide per-
formance differentiation for at least two decision
options. They are redundant and should be removed
from the MCA model. Criterion j is non-discrimi-
nating if

vi0;j ¼ vi;j 8i ¼ 1; . . . ; n; i0 ¼ 1; . . . ; n: ð6Þ

There are numerous descriptions of the MCA deci-
sion making process (e.g. RAC, 1992; Howard,
1991) and preference modelling (Öztürk et al.,
2005). Applications of MCA generally include:

1. Choose decision options.
2. Choose evaluation criteria.
3. Obtain performance measures (xi,j) and fill in the

EM.
4. Transform into commensurate units (this

depends on the type of MCA technique being
applied). This may require decision maker prefer-
ence inputs.

5. Weight the criteria. This is heavily dependent on
decision maker preferences.

6. Rank or score the options.
7. Perform sensitivity analysis (weights, perfor-

mance measures, techniques).
8. Make a decision.
4. Case study water resource evaluation matrices

Six water resource management EMs were
selected to compare MCA techniques (Table 1).
Each EM evaluates a set of water management
options against multiple criteria in different units.
Three of the EMs contain a mix of qualitative and
quantitative data, the others contain only quantita-
tive data. The studies are drawn from across the
globe coming from Austria, Iran, Lebanon, India,
Thailand and Brazil. Some are at a broad strategic
level (e.g. at the national scale by Karnib, 2004)
and others deal with specific and localised options
(e.g. Raju and Kumar’s, 1999; evaluation of irriga-
tion systems for agriculture within a district of
India).

Prior to the application of MCA techniques the
EMs were screened for the presence of dominated
options, as defined by (5) above. Strict dominance
was found in two of the six EMs. In Abrishamchi
et al. (2005) one of eight options was dominated.
In Tiwari et al. (1999) four of ten options were dom-
inated. The dominated options were left in the EMs
for the analysis. All of the criteria in the EMs satis-
fied the requirement of being ‘discriminating’ as
defined in (6) above.
4.1. Criteria weights

All of the case studies specified criteria weights.
These weights were used in the analysis for this
paper. In Abrishamchi et al. (2005) and Tiwari
et al. (1999) four alternative weight sets were avail-
able. In both cases a single non-equal weight set was
chosen from the four available sets. The weights and
evaluation matrix were identical for all MCA meth-
ods, so the only parameter being changed was the
MCA method itself.
5. Multiple criteria analysis techniques

The number of MCA techniques have increased
rapidly over the past several decades (for a recent
review see Figueira et al., 2005). They provide prac-
tically limitless options for combining weights infor-
mation with the evaluation matrix to attain a result.
In this study five MCA techniques are applied which
treat the problem in markedly different ways.
5.1. Weighted summation

Weighted summation (WS) is arguably the most
simple and widely applied technique of MCA (How-
ard, 1991). In weighted summation all criteria are
transformed onto a commensurate scale (usually 0
to 1, where 1 represents best performance), multi-
plied by weights then summed to attain overall util-
ity. The selection of options is on the basis of ui

which is determined by

ui ¼
Xm

j¼1

vi;jwj; ð7Þ

where

Xm

j¼1

wj ¼ 1;

0 < wj 6 1:

Fleming (1999) and Hyde et al. (2004) applied
weighted summation to evaluate groundwater
extraction options in the Northern Adelaide Plains



Table 1
Water management evaluation matrices (EMs) used to compare MCA methods

Authors Location Decision problem Model structure

Abrishamchi
et al.
(2005)

Iran, City of
Zahidan

Selecting water and wastewater management
options such as new distribution networks and
treatment plants

Nine criteria relating to economic, social, public
health, technical and sustainability objectives
Eight city water management projects
Mixed ordinal and cardinal data in the evaluation
matrix

Eder et al.
(1997)

Danube River,
Austria

Ranking water resource management projects
to achieve ecological, social and economic
objectives

Thirty two criteria classified under 8 sub-goals and
3 goals
12 water management projects.
Mixed ordinal and cardinal data in the evaluation
matrix

Karnib
(2004)

Lebanon Evaluation of water resource projects as part of
a national water ‘master plan’

11 criteria in technical, socio-economic,
environmental and economic groups.
Five water resource management projects
Evaluation matrix contains both cardinal and
ordinal data

Raju and
Kumar
(1999)

Andhra
Pradesh,
India

Assessing alternative policy options to improve
irrigation systems

3 criteria: employment; agricultural production
and; net benefits
Six policy options (representing groups of more
specific policies)
The evaluation matrix contains cardinal
performance measures

Srdjevic et al.
(2004)

Paraguacu
River Basin,
Brasil

There is a requirement to improve the use of
two multi-purpose reservoirs on the Jacuipe
river

Six criteria for reliability, vulnerability, resilience,
water shortages, water yield and yield risk.
Twelve management scenarios for upgrading the
reservoirs
The evaluation matrix contains cardinal
performance measures

Tiwari et al.
(1999)

Northern
Plains,
Thailand

Selection of irrigation options to achieve
improved social, environmental and economic
outcomes

Seven criteria related to land suitability, energy,
water use, environment and economic returns to
various stakeholders
Ten alternative irrigated agricultural production
systems
The evaluation matrix contains cardinal
performance measures
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of South Australia. There are many other applica-
tions of weighted summation in environmental
management and water resource planning (Howard,
1991).

Whilst commonly applied weighted summation
makes numerous simplifying assumptions about
the decision problem, which can potentially lead
to inaccurate results (Rowe and Pierce, 1982). For
example, sometimes the aggregation function may
be multiplicative instead of additive when the crite-
ria are non-compensatory (i.e. good performance on
one criterion does not compensate for poor perfor-
mance on another). Another issue is that the criteria
transformations may be non-linear; often concave
or convex forms more accurately capture decision
maker preferences. Sometimes weighted summation
produces only very minor differences in ui for the
options, which may be insufficient to differentiate
performance. It is also possible that ordinal level
data, in the evaluation matrix, is incorrectly treated
as cardinal data. These, and other such issues, are
easy to correct but are often overlooked in the
application of weighted summation.

5.2. Range of value method

The range of value method (ROVM) by Yako-
witz et al. (1993) requires only ordinal specification
of criteria importance from a decision maker. It has
been applied to problems of watershed management
by Yakowitz and Lane (1997) and Yakowitz and
Hipel (1997). The ROVM approach can be useful



260 S. Hajkowicz, A. Higgins / European Journal of Operational Research 184 (2008) 255–265
because decision makers often find it difficult, or not
meaningful, to supply quantitative weights. Studies
of how decision makers interact with weighting
techniques have shown they are most comfortable
with ordinal rankings of criteria importance (Haj-
kowicz et al., 2000).

The ROVM approach calculates the best and
worst utility for each decision option. This is
achieved by maximising and minimising a utility
function.

For a linear additive model the best utility (u�i ) of
option i and worst utility (u�i ) of option i is found by

Maximise : u�i ¼
Xm

j¼1

vi;jwj ð8Þ

Minimise : u�i ¼
Xm

j¼1

vi;jwj ð9Þ

Subject to : w1 P; . . . ;P wm;
Xm

j¼1

wj¼ 1; and wm P 0:

If u�i > u�i0 then option i outperforms option i 0

regardless of the actual quantitative weights. If it
is not possible differentiate the options on this basis
then a scoring (enabling subsequent ranking) can be
attained from the midpoint. This has been used to
attain a complete ordinal ranking in the case stud-
ies. The midpoint is calculated as

ui ¼
u�i þ u�i

2
: ð10Þ
5.3. PROMETHEE II

This technique is an outranking MCA approach
that provides a complete ordering of decision
options (PROMETHEE I provides partial order-
ing). The PROMETHEE methods were developed
by Brans et al. (1986) and is described here based
on Brans and Mareschal (2005). It has been applied
to water resource planning in the Middle East
region (Abutaleb and Mareschal, 1995) amongst
many other applications.

The starting point is to define a preference func-
tion, Pj(i, i 0) , for alternative i versus alternative i 0,
where i 5 i 0. There are several methods (Brans
and Mareschal, 2005). Here we use

P jði; i0Þ ¼
0 if vij 6 vi0j;

vij � vi0j if vij > vi0j:

�
ð11Þ

An aggregated preference index incorporating the
weights is defined as
pði; i0Þ ¼
Xm

j¼1

P jði; i0Þwj: ð12Þ

Eqs. (11) and (12) can easily be adapted to find
Pj(i

0, i) and p(i 0, i). As each alternative faces (n � 1)
other alternatives a positive and negative outran-
king flow is determined by

/þðiÞ ¼ 1

n� 1

Xn

i0¼1

pði; i0Þ; ð13Þ

/�ðiÞ ¼ 1

n� 1

Xn

i0¼1

pði0; iÞ: ð14Þ

It is then possible to determine an overall score for
each alternative by calculating the net outranking
flow, /(i):

ui ¼ /ðiÞ ¼ /þðiÞ � /�ðiÞ: ð15Þ
5.4. Evamix

The Evamix approach by Voogd (1982, 1983),
and described in Nijkamp et al. (1990) and Martel
and Matarazzo (2005), treats data in the evaluation
matrix differently depending on whether it is quali-
tative (ordinal) or quantitative (cardinal). This is
an important contribution of Evamix to the MCA
toolkit. Many MCA methods, such as weighted
summation, are incorrectly applied to ordinal data
by treating it as though it were at a cardinal mea-
surement scale (Rowe and Pierce, 1982).

Published applications of Evamix are rare, how-
ever we have included it because, unlike many other
MCA methods, it treats ordinal and cardinal data
separately. Evamix requires cardinal information
on criteria weights. Evamix commences by identify-
ing unique pairs of options. It then determines an
ordinal dominance score by

aii0 ¼
Xm

j2O

fwj sgnðvij � vi0jÞgc

" #1=c

; c ¼ 1; 3; 5 . . . ;

ð16Þ
where c = a is the parameter which controls the
influences of differences arising from minor criteria
(the larger c is the lesser the influences of differences
on minor criteria); O = a subset of criteria with an
ordinal measurement scale and;

sgnðvij � vi0jÞ ¼
þ1 if vij > vi0j;

0 if vij ¼ vi0j;

�1 if vij < vi0j:

8><
>: ð17Þ
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A cardinal dominance score is calculated by

cii0 ¼
Xm

j2Q

fwjðvij � vi0jÞgc

" #1=c

; ð18Þ

where Q is a subset of criteria with an cardinal mea-
surement scale.

Because the ordinal and cardinal dominance
scores are in different units they must be standar-
dised prior to being combined. One approach2 to
obtain a standardised ordinal and cardinal domi-
nance score (dii 0,rii0) given in Voogd (1983), and
applied in this paper, is called the subtractive sum-
mation technique where

dii0 ¼ aii0
Xn

i

Xn

i0
jaii0 j

 !�1

; ð19Þ

rii0 ¼ cii0

Xn

i

Xn

i0
jcii0 j

 !�1

: ð20Þ

The combined dominance measure ðqii0 Þ for each
pair is determined by

qii0 ¼ wodii0 þ wQrii0 ; ð21Þ
where wo is the sum of weights assigned to the ordi-
nal criteria and wQ = The sum of weights assigned
to the cardinal criteria.

The decision option’s final appraisal score is
given by

ui ¼
1

n

Xn

i0¼1

qii0 : ð22Þ
5.5. Compromise programming

Compromise programming aims to rank or score
decision options based on their distance to some
ideal point and is based on the ‘displaced ideal’ con-
cept by Zeleny (1973, 1982). It has recently been
applied by Abrishamchi et al. (2005) to select urban
water supply options in Iran. The disutility (u�i ) of
each option is the weighted distance from the ideal
points:

u�i ¼
Xm

j¼1

wc
j

fbj � xij

fbj � fwj

����
����
c

" #1=c

; ð23Þ
2 Two other approaches called the ‘‘subtractive shifted interval
technique‘‘ and the ‘‘additive interval technique’’ are described in
Nijkamp et al. (1990).
where fbj is the best value for all options for criterion
j, ftextsubscriptwj is the worst value for all options
for criterion j and c = a parameter that reflects the
importance of maximal deviation from the ideal
solution.

In selecting decision options the aim is to mini-
mise ui. Where possible fbj and fwj can be set to ideal
and anti-ideal values, such as a water quality guide-
line. Where no such ideal or anti-ideal exists, as in
this study, they may be drawn from within the eval-
uation matrix. In this study fbj was set to the maxi-
mum value within criterion j and fwj to the minimum
value (vice versa when a lower score indicated better
performance). When c is set to 1, all distances from
the ideal solution are weighted equally. If c is >1
(e.g. c = 2) larger distances from the ideal solution
are penalised more than smaller distances from the
ideal.
6. Results

The aim of this analysis is to test the level of
agreement between the five MCA techniques for
each EM. Weights and performance measures in
the evaluation matrix are held constant for each
MCA technique. Three tests are performed to mea-
sure the level of agreement:

1. The similarity between two sets of rankings was
measured using Spearman’s rank correlation
coefficient (q). Values for q range from �1 to 1,
where 1 represents perfect rank correlation.
Because the outputs have no tied rank positions
we compute q for rank output from two MCA
methods, R0 ¼ fr01 . . . r0n and R00 ¼ fr001 . . . r00n, by
Sheskin (2004):
q ¼
Pn

i¼1ðr0i � r00i Þ
2

n3 � n
: ð24Þ

2. The similarity of ranks produced from the five
MCA methods was measured using Kendall’s
Coefficient of Concordance (z). Values for z

range from 0 to 1, where 1 represents perfect rank
correlation. As the output has no tied rank posi-
tions z is computed by Sheskin (2004)
z ¼

Pn
i¼1 si �

Pn

i¼1
si

n

� �2

1
12

k2ðn3 � nÞ
; ð25Þ



Table 2
Kendall’s coefficient of concordance (z) for all evaluation
matrices (EMs)

Evaluation matrix z

EM1. Abrishamchi et al. (2005) 0.81
EM2. Eder et al. (1997) 0.91
EM3. Karnib (2004) 1.00
EM4. Raju and Kumar (1999) 1.00
EM5. Srdjevic et al. (2004) 0.98
EM6. Tiwari et al. (1999) 1.00

4 The MCA techniques applied by Gershon and Duckstein
(1983) included ELECTRE, compromise programming, co-oper-
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where k is the number of MCA methods, which
equals 5 for this paper and si is the sum of ranks
assigned to a decision option i across all k MCA
methods.

3. A test was made on agreement between the top
three rank positions. This was made because
sometimes the purpose of MCA is to select a sin-
gle option. A decision maker using MCA is likely
to select from the top few options. In this test a
result of (1,2,3) indicates first, second and third
rank positions are identical; (1, 2,#) indicates
first and second rank positions are identical;
(1,#,#) shows only the first is identical and;
(#,#,#) shows none is identical.
Values for z for each evaluation matrix are given
in Table 2 and range from 0.80 to 1. In three
EMs, Karnib (2004), Raju and Kumar (1999)
and Tiwari et al. (1999), z is equal to 1. This
means there is perfect agreement3 between the
MCA techniques. Here it would not matter
which approach was applied as the result would
be identical. There is near perfect agreement
between the MCA techniques applied to the
EMs by Srdjevic et al. (2004) and Eder et al.
(1997) with values for z of 0.98 and 0.91. Again
it would make little difference to the overall result
which technique were applied. A values for z of
0.81 was obtained for the EM by Abrishamchi
et al. (2005) revealing some disagreement
between MCA methods. Overall, the values for
z reveal strong agreement with a change in
MCA technique typically resulting in only a
minor variation in results.

The strength of agreement, measured with q, for
each pair of techniques is shown in Tables 3–5. We
only show these results for the three EMs where
3 The agreement of MCA techniques applied to the Tiwari et al.
(1999) evaluation matrix is near-perfect. When rounded to three
decimal places it produces a z of 0.997.
there is at least some disagreement between meth-
ods. The EMs for Karnib (2004); Raju and Kumar
(1999) and Tiwari et al. (1999) were in perfect agree-
ment and produce an r of 1 for every pair of MCA
methods.

Whilst all techniques typically produced high lev-
els of agreement the strongest disagreement was
recorded by the range of value versus Evamix tech-
niques with a q of 0.29. The EMs with higher dis-
agreement were those that contained a mix a
quantitative and qualitative performance data.

This is particularly noticeable in the Abrishamchi
et al. (2005) EM which has the minimum q of 0.29.
The technique with strongest disagreement to the
others in this EM is Evamix. This is probably
because Evamix employs different algorithms to
handle ordinal and cardinal appropriately. Other
techniques, such as weighted summation, are some-
times misapplied by treating ordinal data in the EM
as though it were cardinal. The similarity of rank
orders in the top three positions is also high under
different MCA techniques. If MCA were being used
to select a single ‘best’ option then variation of tech-
nique would lead to the same choice in each EMs.

These results are supported by prior studies of a
similar nature. In forestry applications of MCA
Howard (1991) found that: (a) no single MCA tech-
nique had a particular mathematical advantage over
the others; (b) the most important aspect is the
selection of criteria and options and; (c) the bulk
of the decision maker’s effort should go towards
specifying preferences.

Gershon and Duckstein (1983) conducted a study
of four MCA techniques4 to evaluate water manage-
ment strategies in a semi-urbanised area in the Uni-
ted States. They found the different techniques
yielded ‘similar’ results and all were potentially
applicable for river planning. Finally a study of
MCA to evaluate water management projects in
the Austrian part of the Danube river by Ozelkan
and Duckstein (1996) applied five MCA tech-
niques.5 Again it was found that changing MCA
technique produced minor differences in the final
ranking of options.
ative game theory and multi-attribute utility theory.
5 The MCA techniques applied by Ozelkan and Duckstein

(1996) included PROMETHEE, Geometrical Analysis for Inter-
active Assistance (GAIA), multicriterion Q-analysis, compromise
programming and cooperative game theory.



Table 3
Rank correlation (q) results for evaluation matrix #1 by Abrishamchi et al. (2005)a

Range of value PROMETHEE II Evamix Compromise programming

Weighted summation 0.90 (1,#,#) 1.00 (1,2,3) 0.52 (1,#,#) 1.00 (1,2,3)
Range of value – 0.90 (1,#,#) 0.29 (1,#,#) 0.90 (1,#,#)
PROMETHEE II – – 0.52 (1,#,#) 1.00 (1,2,3)
Evamix – – – 0.52 (1,#,#)

Here (1,2,3) indicates first, second and third rank positions are identical; (1,2,#) indicates first and second rank positions are identical;
(1,#,#) shows only the first is identical and; (#,#,#) shows none is identical.

a The agreement between methods for the top three rank positions is supplied in parenthesis.

Table 4
Rank correlation (q) results for evaluation matrix #2 by Eder et al. (1997)

Range of value PROMETHEE II Evamix Compromise programming

Weighted summation 0.75 (1,2,#) 1.00 (1,2,3) 0.97 (1,2,3) 1.00 (1,2,3)
Range of value – 0.75 (1,2,#) 0.74 (1,2,#) 0.75 (1,2,#)
PROMETHEE II – – 0.97 (1,2,3) 1.00 (1,2,3)
Evamix – – – 0.97 (1,2,3)

Table 5
Rank correlation (q) results for evaluation matrix #5 by Srdjevic et al. (2004)

Range of value PROMETHEE II Evamix Compromise programming

Weighted summation 0.92 (1,2,#) 1.00 (1,2,3) 1.00 (1,2,3) 1.00 (1,2,3)
Range of value – 0.92 (1,2,#) 0.92 (1,2,#) 0.92 (1,2,#)
PROMETHEE II – – 1.00 (1,2,3) 1.00 (1,2,3)
Evamix – – – 1.00 (1,2,3)
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7. Discussion and conclusion

This study finds strong agreement between dif-
ferent MCA techniques used for water resource
management. This finding was repeated in six
EMs taken from published water management deci-
sions. There were only a few cases where different
techniques generated markedly different results.
When it occurred, disagreement was more pro-
nounced in EMs that contained both ordinal and
cardinal performance data, as opposed to just cardi-
nal data.

The Evamix method was distinct from other
MCA techniques in the mixed ordinal-cardinal
EMs. Unlike the other MCA methods Evamix
employs separate algorithms to handle ordinal and
cardinal data. Applications of Evamix are rare com-
pared to the other MCA techniques in this paper.
Evamix may warrant greater application in water
resource management to better handle EMs with
mixed ordinal and cardinal data.

Apart from the ordinal-cardinal issue, results of
discrete choice analysis in water management were
found to be relatively insensitive to variation in
MCA technique. Guitouni and Martel (1998) pro-
pose a structured approach for choosing MCA tech-
niques. However, in many applications there is no
overwhelming reason to adopt one MCA technique
over another and several (or dozens of) approaches
are potentially valid. The results in this paper may
offer some comfort to users of MCA in water man-
agement. So long as ordinal and cardinal data are
handled appropriately, the ranking of decision
options is unlikely to change markedly by using a
different MCA technique.

Sometimes the ease of understanding an MCA
technique will be a primary concern in the choice
of whether (or not) it is used. Weighted summation
is a relatively easy technique (Howard, 1991; Zana-
kis et al., 1998) that can be modelled with a simple
spreadsheet. The adoption of more sophisticated,
and more complicated, techniques may not be nec-
essary if they are likely to confuse decision makers.
If decision makers cannot understand the MCA
technique, and how it generated a result, it is unli-
kely to be used. This has been highlighted by Bey-
non et al. (2002) as one of the biggest obstacles to
adoption of decision support tools.



264 S. Hajkowicz, A. Higgins / European Journal of Operational Research 184 (2008) 255–265
The selection of MCA technique will typically be
of lesser importance than the initial structuring of
the decision problem which includes: (a) selection
of criteria, (b) selection of decision options, (c)
weighting the criteria and (d) obtaining perfor-
mance measures to populate the EM. This was also
observed by Janssen (2001) in a case where MCA
was scrutinised in a court of law in the Netherlands.
Janssen (2001, p108) concludes that:

‘‘The main methodological challenge is not in the
development of more sophisticated MCA meth-
ods. Simple methods, such as weighted summa-
tion, perform well in most cases. More
important is the support of problem definition
and design.’’

Compared to the expansive work on MCA algo-
rithms there is little guidance available to help a
decision analyst structure an MCA problem and
choose criteria and options to begin with (Kasanen
et al., 2000). Recent work by Mingers and Rosen-
head (2004) on problem structuring methods
(PSM) and a computer interface by Scheubrein
and Zionts (2006) provide a useful starting point.
However, further work is required on MCA prob-
lem structuring for it to reach its full potential in
supporting water resource management decisions.
In the coming years our research aims to address
this need by developing multi-criteria decision sup-
port tools for the Australian water industry.
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