Scenario planning resources for climate resilience in the Napa Valley

Lisa Micheli, PhD Pepperwood Foundation and Terrestrial Biodiversity Climate Change Collaborative (TBC3.org)

Napa Watershed Symposium May 24, 2017

Agenda

- introduce Pepperwood and TBC3 - north bay climate ready collaboration
 - what are local projections for climate change?
- how you can to use scenarios to prepare for climate change?

Pepperwood Foundation

mission

to advance science-based conservation throughout our region and beyond

The Dwight Center for Conservation Science

3200-acre scientific preserve in Sonoma County

Monitoring Locations at Pepperwood

Biological Research

Breeding Bird Survey Points

Wildlife Picture Index Cams

Grassland Monitoring Sites

Vegetation Super Plots

Vegetation Plots

0.9 Miles

0.45

Climate Monitoring

Micro Met Station

Weather Station

Raingauge

Antenna

got data?

Topo-climate-variability of temp, rainfall and humidity across preserve, an interface of coastal-inland meteorology

Full hydrologic cycle monitoring-fog drip, precipitation, soil moisture, stream flow

Dominant plant communities-forest and grassland long-term stations and plant phenology transect

Wildlife occupancycomplemented by bird, herpetofauna, invertebrate surveys

Terrestrial Biodiversity Climate Change Collaborative (Pepperwood's TBC3)

AGRICULTURAL PRESERVATION AND OPEN SPACE DISTRICT

the question

how will a shifting climate effect the lives and landscapes of Northern California?

take home message

our region is becoming more arid – and potentially also more fire and flood prone!

the challenge

so how can we make our watersheds and working lands more resilient?

Climate Ready North Bay: Selected Futures

Solar radiation Basin Characterization Model translating climate to watershed response

Size of arrows reflect relative magnitude of water flow

Brown text is BCM input, Purple text is BCM output

BCM output **Climatic Water Deficit**

annual evaporative demand that exceeds available water= drought stress

Potential – Actual Evapotranspiration

Integrates climate, energy loading, drainage, and available soil moisture Increases with all future climate scenarios

Surrogate for irrigation demand

Correlates with vegetation and fire risk

BCM methods

TBC3 has built a climate adaptation knowledge base for application to regional conservation Napa County Climate Ready North Bay Case Study on CA Climate Commons

http://climate.calcommons.org/crnb/home

generating an ensemble of projections for use in scenario planning NOT predictions

How is climate change projected to impact the variability of regional annual rainfall relative to the historic record?

We don't know on average whether we will get more or less...but rain is likely to be more variable year to year!

100% more flood years and 60% more drought years on average

Basin Characterization Model: Napa Valley Watershed Trends in 30-year average values, historic-2099

Temperatures increase by 4-7°Fby mid-century7-12°Fby end-century

Variable	Units		Projected change in temperature (Deg F) and hydrologic indicators (%)					
		Current	Moderate Warming, High Rainfall		Moderate Warming, Moderate Rainfall		Hot, Low Rainfall	
		1981-2010	2040-2069	2070-2099	2040-2069	2070-2099	2040-2069	2070-2099
Ppt	in	36.4	+23%	+ 34%	-3%	+ 5%	-21%	-24%
Tmn	Deg F	39.4	+3.4	+ 6.4	+ 2.1	+ 4.9	+ 4.2	+ 7.3
Tmx	Deg F	86.5	⁺ 4.4	+ 7.4	+ 4.0	+ 6.6	+ 7.3	+ 11.5
CWD	in	30.6	+4%	+ 9%	+ 6%	+ 10%	+ 12%	+ 20%
Rch	in	10.6	⁺ 27%	* 27%	-1%	+ 5%	-29%	-27%
Run	in	7.8	⁺ 67%	+107%	-11%	+ 22%	-44%	-51%

VARIABLES: Ppt=precipitation, Tmn=winter minimum temperature, Tmx=summer maximum temperature, CWD=climatic water deficit, Rch=recharge, Run=runoff

How is climate change projected to impact the variability of reservoir supplies?

Water Supply-Recharge + Runoff-projections

30 year averages capture potential trajectories depending on whether we receive more or less rainfall

We have also calculated these trends for every reservoir catchment in basin

				Moderate Warming, High Rainfall		Moderate Warming,			
			Current			Moderate	Rainfall	Hot, Low Rainfall	
Rch+Run (acre-ft)		Area (acres)	1981-2010	2040-2069	2070-2099	2040-2069	2070-2099	2040-2069	2070-2099
Mountains	total	452,476	243,131	344,656	392,444	233,723	272,710	163,522	160,806
	SD		58,769	71,890	76,404	56,910	59,658	45,580	46,690
	% change			42%	61%	-4%	12%	-33%	-34%
Valley floor	total	189,418	59,142	89,894	107,424	53,860	67,413	33,201	31,061
	SD		21,889	28,335	30,616	22,300	23,755	17,066	17,567
	% change			52%	82%	-9%	14%	-44%	-47%

project overview

Management Question

How will the flow regime of the Napa River be potentially impacted by climate change?

What are implications for fisheries and riparian zones, and tributaries prone to flooding?

River managers need to design for both unprecedented HIGH and LOW flows

How will the low flow regime of the Napa River and its tributaries (critical to salmonid summer survival) be potentially impacted by climate change?

Napa River: Saint Helena and Napa Gages Summer low flows (Aug-Sep-Oct)

How will climate change impact Napa Valley tributaries prone to flooding?

Napa Tributaries that Flood

exceeding historical threshold in

2 years exceed threshold

1983 is reference peak "year" of historical record

твсз

Terrestrial Biodiversity

Climate Change Collaborative

Hot & Low Rainfall

Warm &

Rainfall

Moderate

None exceed threshold

How will the agricultural lands of the Napa Valley be potentially impacted and what are the implications for irrigation demand?

Climatic Water Deficit, Hot and Low Rainfall

CWD 31 in/v average

CWD 34 in/y average (-3 in/y)

CWD 37 in/y average (-6 in/y)

Water deficits increase in even high rainfall scenarios

Climatic Water Deficit on Napa Agricultural Lands

Warm &

Rainfall

Hot &

CWD on Napa Agricultural Lands < Historical Future -> Scenario 3 y=0.0248x+27.994 Moderate ð

last 30 years 10 % greater deficit

last 30 years 20 % greater deficit

project overview

Management Question

How will groundwater resources of the Napa River be potentially impacted by climate change?

Projected Change in Recharge, Hot and Low Rainfall

11 in/y average for valley

29% reduction

to 7.5 in/y average for valley to 7.8 in/y average for valley

Low rainfall scenario results in losses of 2.5 inches of groundwater recharge per unit area annually

How will the seasonality of the hydrologic cycle be potentially impacted by climate change? Bud Break in Napa Valley

Though it's easy to find reasons to visit Napa Valley at various times throughour shining, the weather is mild and enjoyable, nature is waking up for another glow buds in the 400+ vineyards across Napa Valley are beginning to break. Spring harvest; it's a time of renewal and new beginnings. Clear signs that spring is w carpets of mustard growing between the vines and the bud break now occurrin your room at our romantic Bed and Breakfast this spring, and enjoy nature's re

Bud Break Comes Early

Bud break is an exciting time in Napa Valley, and it's ultimately where the great bud break, the vineyards that have been dormant throughout the winter month tender buds of the growing season emerge in the early months of spring, growi

clusters of grapes begin to form. Though the Napa Valley is only 30 miles long, bud break and flowering can take up to two n the differences in both elevation and temperature. The southern Carneros region near San Pablo Bay tends to be cooler whe

This year, bud break in Napa Valley seems to be happening earlier than ever before, thanks in large part to the warmer and

Seasonal Water Diagram 2070-2099

Seasonality of Water Cycle

1980-2009	Annual Average	
РРТ	25.9	in
CWD	19.8	in
AET	13.0	in
Runoff	8.2	in
Recharge	4.8	in
Recharge/runoff	0.58	
Tmax	59.2	F
Tmin	41.7	F

2070-2099	Annual Average	
DDT	20.8	in
CWD	20.8	in
AFT	11.1	in
Runoff	6.4	in
Recharge	3.4	in
Recharge/runoff	0.53	
Tmax	63.7	F
Tmin	45.5	F

How can I get this annual and seasonal time series BCM data for the Napa Valley and beyond?

BETA now available via the Climate Smart Watershed analyst on California Climate Commons! <u>calcommons.climate.org/tbc3/ sf-bay-watershed-analyst</u>

User selects a variable, temporal resolution, running average option, "comparison" windows

Seasonality of selected parameterone or multi-year records/projections versus reference period

Download Data for this Watershed

Climate Scenario: Historic ۳

Download

How will the natural vegetation of the Napa Valley be potentially impacted by climate change?

easing temperature

Blue Ridge Berryessa

Southern Mayacamas Mountains

there can be significant differences between landscape units

TBC3 Terrestrial Biodiversity Climate Change Collaborative

Southern Mayacamas Vegetation 3

Projected Vegetation Model reports available for North Bay at

http://www.peppe rwoodpreserve.org /tbc3/ourwork/climateready/

Or shortcut to Tbc3.org

Figure X. Conceptual framework for classifying portions of the preserve relative value and historic variability of climatic water deficit

Locations with high water deficits, stable over time

Drought tolerant species adapted to consistently hot/dry sites

If change exceeds historic variability, species may be stressed

D

Locations with high water deficits, variable over time

Resilient species adapted to hot/dry and extremes

Potential genetic stock for locations with projected high CWD deltas

> Monitor potential expansion?

Using climatic water deficit projections to think about parcel-scale stewardship strategies

> Terrestrial Biodiversity Climate Change Collaborative

Locations with low water deficits, stable over time

Potential wet/cool species refugia

Vulnerable to change that exceeds historic range

Important to monitor survival

Locations with low water deficits, variable over time

Species that prefer wet/cool conditions but can tolerate extremes

Potential genetic stock for wet/cool stable sites impacted by rising CWD

More variable over time

How will the risk of fire in the Napa Valley be potentially impacted by climate change?

Change in Projected Probability of Burning One or More Times

Probability of fire doubles in some locations

Urban and agricultural areas masked out

		Current	Hot, Low Rainfall	Moderate Rainfall	
Variable	Units	1971-2000	2070-2099	2070-2099	
Probability of burning 1	Percent	21%	22%	29%	
or more times	SD	2%	5%	3%	

What kind of long-term agency plans can use this landscape-level data?

In general:

human health energy demand watershed plans surface water supply fire and hazard mitigation sustainable groundwater management agricultural sustainability ecological restoration

In Napa:

CAP-Climate Action Plan-potential to use projections as local estimate of projected climate change. Increased heat could be used to project increase electrical use and emissions. Starting point for conversation about adaptation Groundwater Plan: augment groundwater data with model recharge (current and projections). What area do you need to protect to achieve a target (% total?) recharge amount? Can Low Impact Development maintain recharge potential? Urban water plans: reservoir scenario planning for extreme rainfall years, droughts and floods

Landscape Connectivity for Climate Adaptation

Fall 2016 launch

Continuous wildlife permeability surface e.g. Merenlender et al

Meaningful consideration of streams and riparian corridors

Assessment of climate adaptation benefits

Win-win strategies for climate adaptation

Mitigate greenhouse gas emissions. Protect key watershed functional areas: floodplains, recharge areas, wetlands. Recycle and conserve water. Increase soil moisture holding capacity. Get serious about fuels management. Identify native species that are likely to be climate "winners"- protect seed sources. Keep the landscape connected-riparian and terrestrial habitat corridors. Prepare for more frequent extreme events.

Invest in preparedness-its cheaper than emergency response!

20160713.pdf

Open with 👻

Climate Smart North Bay fact sheet 5 ~ page 3

20

5 ACTORS

Warmer

Winters

More

Floods

Higher

Seas

Resilience considerations...

The future of Northern CA is going to be more arid

Water supply will be more variable Groundwater recharge will be critical to maintaining resilience

Consider more aggressive approaches to fuel load management and post-fire restoration?

photo D.D. Ackerly

Thank you!

www.pepperwoodpreserve.org