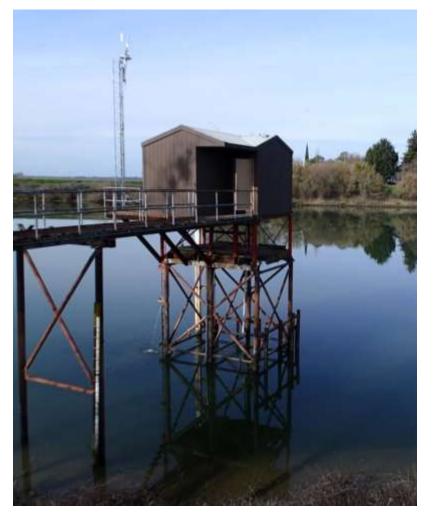
Water quality and chemical pollution: Effect-based monitoring is critical

Richard E. Connon

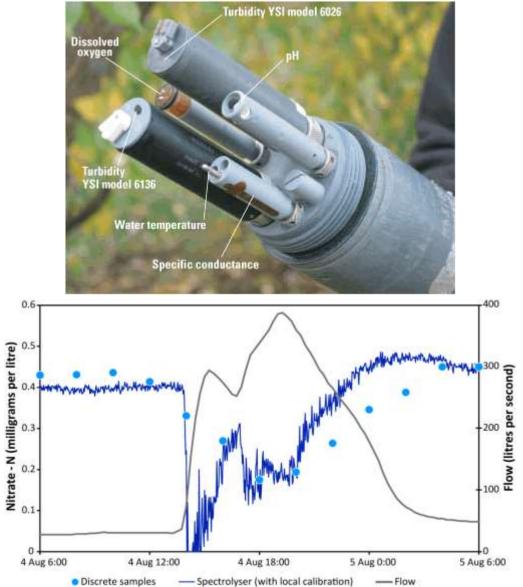
Associate Adjunct Professor School of Veterinary Medicine Department of Anatomy, Physiology and Cell Biology University of California, Davis

reconnon@ucdavis.edu

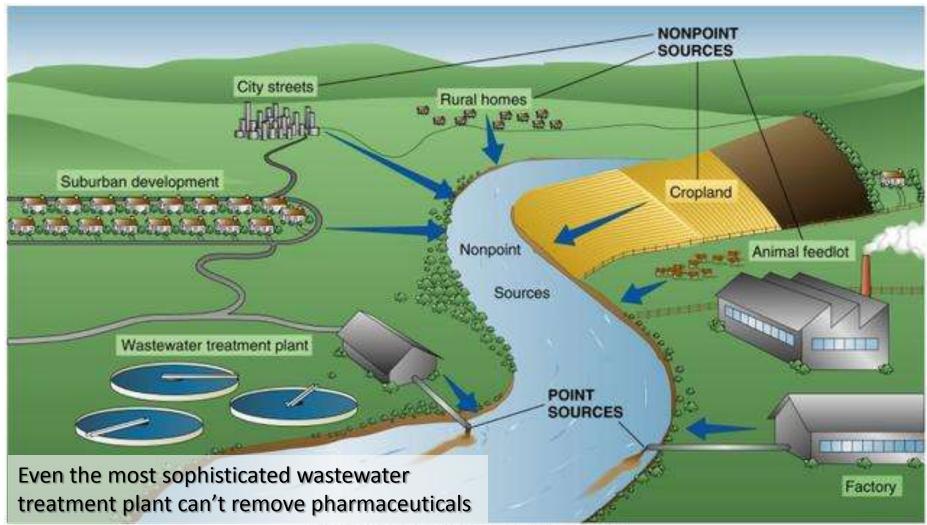
Watershed Moments: Nature's Value, NAPA, May 24, 2017


Connon Lab

https://connonlab.wordpress.com/

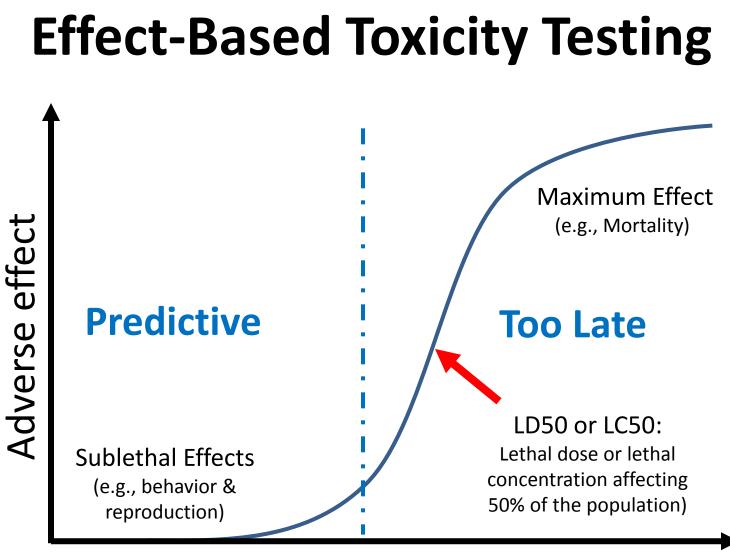

ETERINARY MEDICINE

UCDAVIS

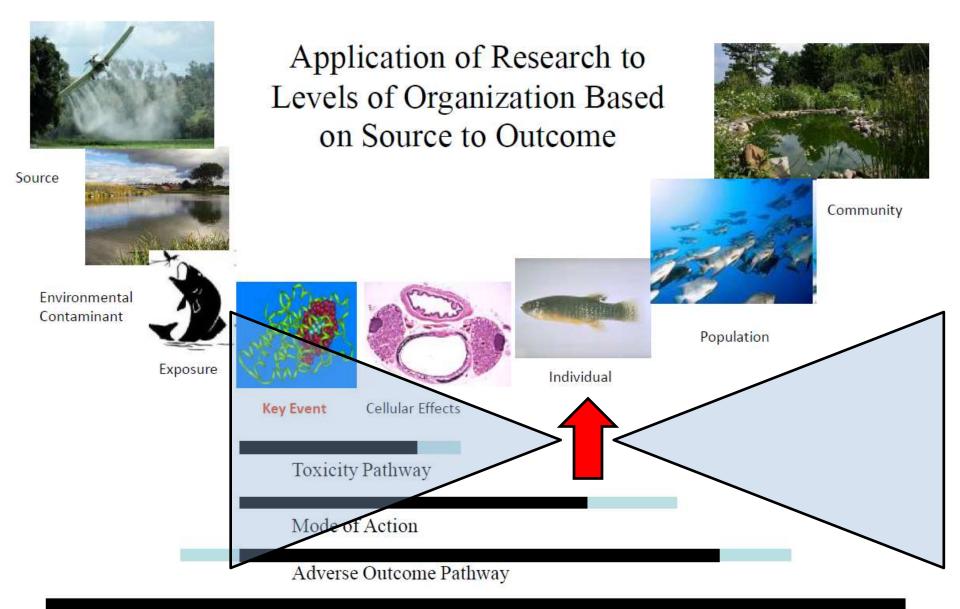

Physicochemical parameters

e.g., Sacramento River a Hood, DWR Continuous Monitoring Field Station

Sources of pollution


Pesticide Action Network (PAN)

Home > Pesticide Use						Help Feedback
Top 50 Pesticides Used on All Sites In Napa In	2012					ep recourt
						Top
Intells for 2003 and later may be under reported due to omission of a Themical Name	Chemical Class	PAN Bad Actor	Gross	Application Rate	Acres Planted	Acres Treate
(A Cherry Gode)			Pounds	Pounds per acre treated	which all or part has been aproyed.	COLUMN AND A
VI Chemicals (HA, 80) Lives		Not Listed	1,301,570	1.24	52,100	1,000,3
kultur (600)	Inorganic	Not Listed	872_176	6.10	44,037	142,86
Gere Furgezile, Insectable						
Ameral off, unrefined (401, 204), 766, 763, 2687, 473)	Petroleum derivative- Aromatic	Yes	102,509	4.08	16,689	24,8
lotel Data for Mineral oil, unrefined summarizes data from 2 or more	chem codes and may not agre	e with DPR sommaries which t	total data for each chem code.			
Unai, Intechnike, Adjavaré, Hechnike, Fungatale						
ime-sulfur (200)	Inorganic	Not Listed	44,382	23.2	2,857	1,9
Uses: Insectizide, Piergenile						
Ryphosate_potassium_salt (6820)	Phosphonoglycine	Not Listed	36,086	1.58	24,851	22,0
Uses Herbinde	water and the second second					
fineral oil, refined (2046, 2007, 2106, 2760, 1641)	Petroleum derivative- Saturated	Not Listed	25,793	5.12	4,313	4,7
lotel Data for Mineral oil, refined summarizes data from 2 or more of	hem codes and may not agree t	with DPR summaries which lot	al data for each chem code.			
Uses: Herbeide, Plant Growth Régulator, Insecticule, Adjuvant, Solverk	499900000	7208	Statistics.		12010-0	100
Suffar dioxide (601) Units Destalant, Presentation	Inorganic	Yes	18,597	83.0	61.3	13
iodium carbonate percevitydrate (6786)	Inorganic	Not Listed	14,450	175.7		10
University Calculated and Calculated (1998)	Heren Denne 2	NOT LINES	14,400	175.7		10
3-Dichloropropene (673)	Halogenated organic	Yes	13.378	333.3	45.5	:40
Uses: Furriquett, Nernaticide	(0.50) - State (0.50)					
lonvi phenoxy poly (ethylene oxy) ethanol (1743, 1387, 3889, 6756)	Polyalkyloxy Compoun	d Not Listed	12,171	0.16	25,539	65,7
lotel Data for Nonyl phenoxy poly (ethylene coy) ethanci summarize	s data from 2 or more chem co	des and may not agree with Di	PR summaries which total data 8	or each chem code		
Uses: Adjournt, Plant Growth Regulator, Scap/Surfactant		and the state of the				
Avphosate, isopropylamine sell (1964) User Heisade active Humplenses, subsp. http://www.	Phosphonoglycine	NetListed	fo org/[Co ish?co	h=28	6,4
ocilus thumquensis, subsp. Runstain when APT 5755, termentation	<u>v vv.pc3</u>			<u> </u>		1000
olids and solubles (Al29)	Microbial	Not Listed	7,143	0.01	5,538	11,7
Liuse Breechroide						


Effects of contaminants

"This means something, but I can't remember what!"

Increasing dose/concentration

Source to Outcome Pathway

Sensitivity Differences & Indicator Species

Group 1 Do not Tolerate pollution

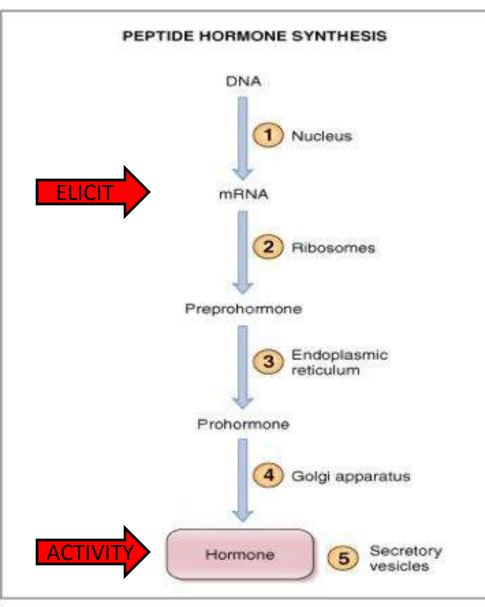
e.g., Mayfly nymph

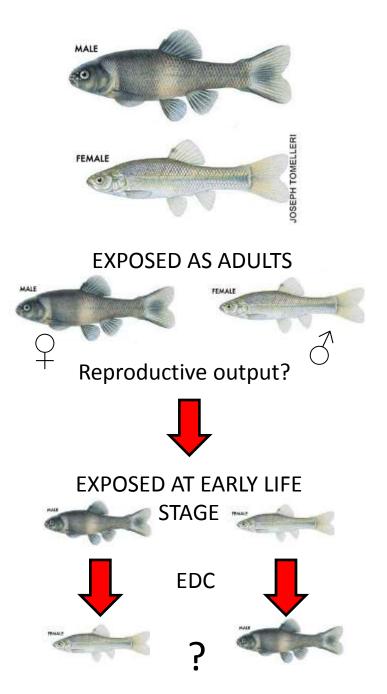
Group 2 Tolerate moderate pollution

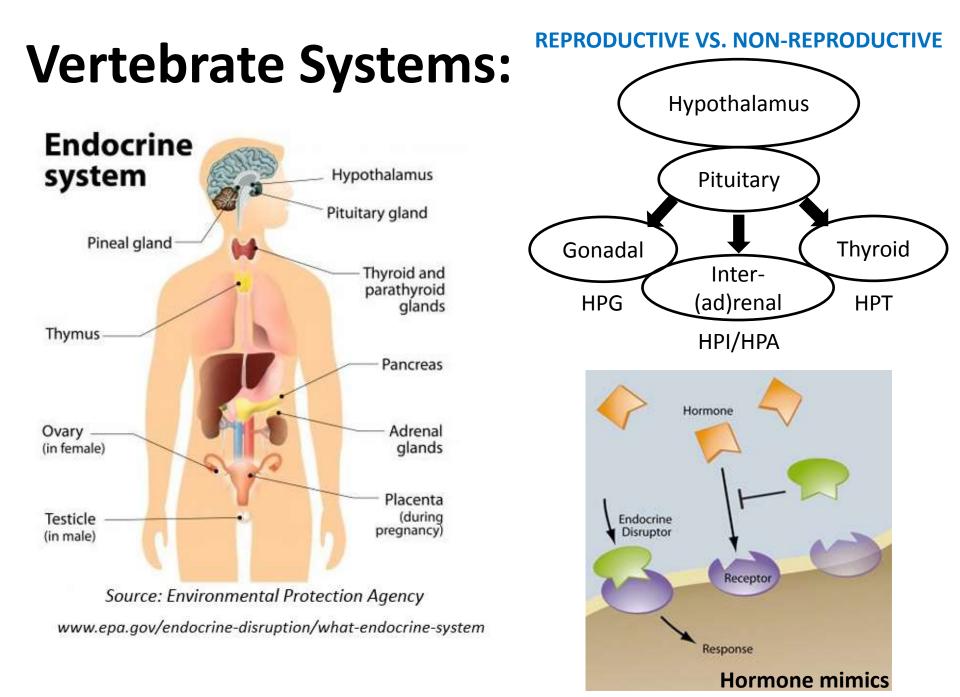
e.g., Dragonfly nymph

Group 3 Tolerate pollution

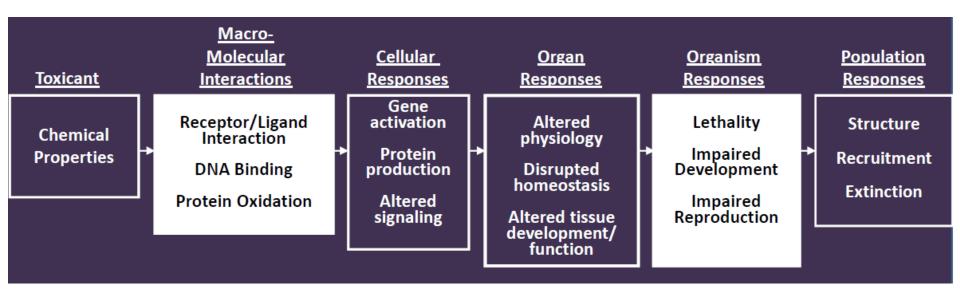
e.g., Blackfly larvae


e.g., Caddisfly larvae

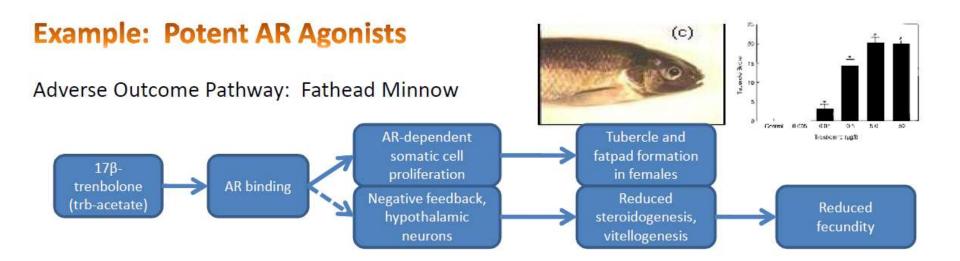


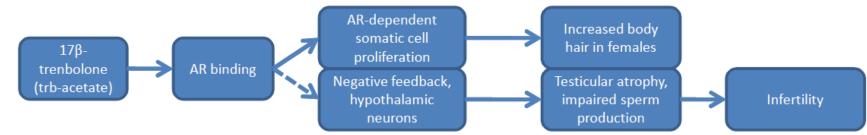


e.g., Flatworms



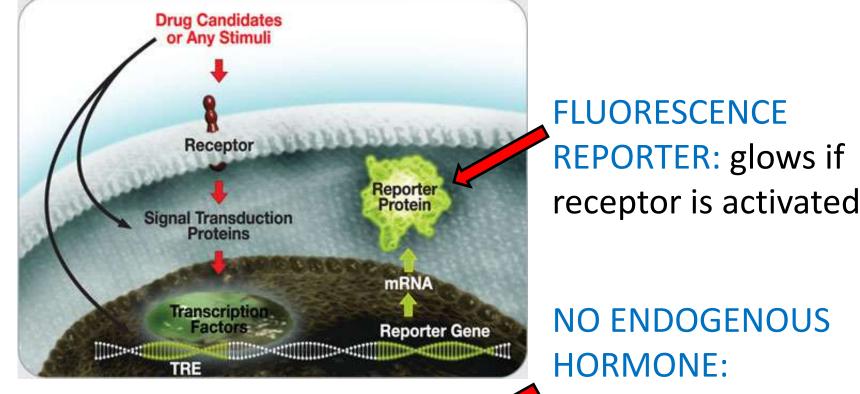
© Elsevier. Costanzo: Physiology 3E www.studentconsult.com




ADVERSE OUTCOME PATHWAY FRAMEWORK

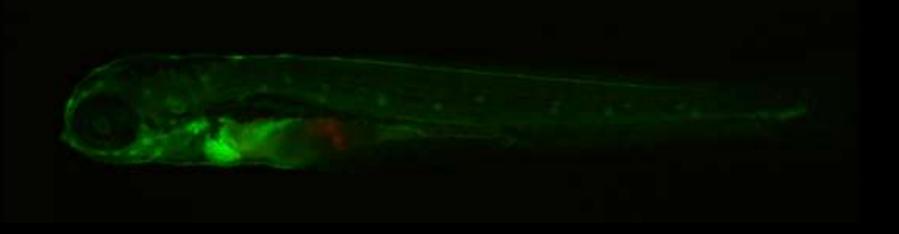
Source: An Adverse Outcome Pathway (AOP) is a conceptual framework that portrays existing knowledge concerning the linkage between a direct molecular initiating event and an adverse outcome, at a level of biological organization relevant to risk assessment. (Ankley et al. 2010, Environ. Toxicol. Chem., 29(3): 730-741.)

Adverse Outcome Pathway: Human



Source: Ed. Perkins; http://nas-sites.org/emergingscience/files/2011/08/Perkins.pdf (adapted)

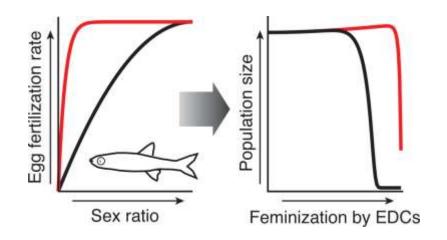
In vivo Approaches


- Gene Expression: CEC (or metabolite) activates mRNA production to generate Hormones, i.e.
 Initiation of hormone synthesis mimic.
 - Targeted Quantitative PCR: receptor and/or HPX axis.
- Hormone quantitation/activity: mRNA has led to hormone production
 - Enzyme linked immunosorbent assay (ELISA)/Binding assays: e.g., vitellogenin, choriogenin, testosterone, T3, T4...

Zebrafish model transgenic ER reporter Live determination of EDC activity

Transgenic line: cyp19a1a (-/-);Tg(5xERE:egfp) HORMONE: Only external "mimics" activate reporter

Zebrafish model transgenic ER reporter Live determination of EDC activity


In vivo Approaches

Males expressing of: female hormones Females expressing male hormones

Impacts contribution
of the individual to the population

Population effects

- Fecundity: emergence/number of offspring
- Sex ratios: male:female skewness
- Epigenetics: parental transfer.
 - MethylSeq DNA methylation

White J.W., Cole B., Cherr G., Connon R.E. and Brander S. (2017). Scaling up the individual-level effects of endocrine disruptors: how many males does a population need? Environmental Science and Technology, 51(3): 1802–1810.

Chemical analyses on their own will not inform on risk: *In vivo* methods are crucial in identifying the connection between exposure and biological effects.

Pros:

- cross-talk between biological pathways,
- environmental influence,
- integration of action through different mechanisms at different tissues
- metabolic transformations, bioaccumulation, and homeostatic controls

However (Cons):

- inter-individual, seasonal, and temporal variability
- Expensive and difficult to accommodate high throughput screening (but possible).

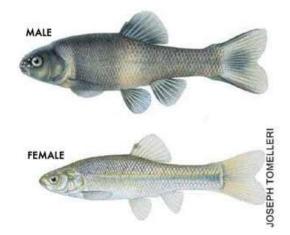
Watershed Moments: Nature's Value

- What typical water quality parameters are measured in streams/rivers?
 - Standard physicochemical parameters: Temperature, Dissolved Oxygen, pH, Salinity, Alkalinity, Ammonium, Turbidity
- What do these parameters tell us about the health of our watershed?
 - Physicochemical parameters will give an indication of niche suitability, and alert to potential changes to that niche
- What are emerging/new water quality challenges we will face in the future?

- Multiple contaminants (synergism/additivity) & multiple stressors

 What can we do to protect or improve water quality – the health of our watershed?

Instigate an effect-based monitoring system


Watershed Moments: Nature's Value

Identify your questions needs

- Current monitoring?
- Continuous monitoring?
- Monitoring Station(s)?
- Seasonal impacts?
- Species protection?
- Watershed protection?
- Environmental or Political concern?

Screening with in-vitro

Verification with in-vivo

Analytical Chemistry

Over 100 compounds in a single sample

