

OUTFALL INSPECTIONS & MONITORING

Jamison Crosby, Program Manager
Napa Countywide Stormwater Pollution Prevention Program
11/21/19

Storm Drain Outfall Monitoring

Why sample outfalls?

- Detect illicit discharges
 - Wash water
 - Used oil disposal
 - Construction discharges
 - Power washing/surface cleaning
 - Mobile washers

- Inspect annually during dry weather
- Stormwater permit requirement

Outfall Sampling in Napa County

- 6 Years of data collection
 - 2014 to present...and beyond?
- ~ 308 total outfalls in all jurisdictions
 - In 2014, all 308 were assessed
 - Later, 308 narrowed to ~162 via prioritization process

Methods

 2 person team visits each outfall, collects photo, GPS coordinates, misc

data using tablet

At least 72 hours since last rainfall

 If water flowing, sample was collected and analyzed using variety of test kits & hand held meters

•	amates, misc
	Data Collection App Entry Fields
	Jurisdiction
	Outfall ID
	Latitude/Longitude
	Name of Receiving Waters
	Whether Receiving Waters Are Aquatic Habitat
	Outfall Pipe Diameter
	Outfall Pipe Configuration
	Outfall Pipe Shape
	Outfall Pipe Construction
	Assessment Date and Time
_	Structural Condition
	Presence and Severity of Erosion
	Maintenance Condition
	Whether Water was Flowing from Outfall
	Description of Flow Quantity
	Odor of Flowing Water, and Brief Descriptor of Odor
	Whether a Sample was Collected
	Whether Analyses Were Performed
	Which Analyses Were Performed
	Results of Analyses
	Whether Results Exceeded Action Level Concentrations
	Comments

Analytes and Action Levels

Indicator Parameter	Action Level Concentration
Ammonia	>= 50 mg/L
Color	>= 500 units
Conductivity	>= 2,000 µS/cm
Hardness	<= 10 mg/L as CaCO3 or >= 2,000 mg/L as CaCO3
рН	<= 5 or >=9
Potassium	>= 20 mg/L
Turbidity	>= 1,000 NTU

Discharge Types Detected

Parameter					
	Sewage Washwater Tap Water Industria		Industrial or Commercial Liquid Wastes	Laboratory/Analytical Challenges	
Ammonia	•	•	0	(Can change into other nitrogen forms as the flow travels to the outfall
Color	•	•	0	•	
Conductivity	•	•	0	•	Ineffective in saline waters
Detergents – Surfactants	•	•	0	•	Reagent is a hazardous waste
Fluoride*	0	0	•	•	Reagent is a hazardous waste Exception for communities that do not fluoridate their tap water
Hardness	•	•	•	•	
рН	0	•	0	•	
Potassium	•	0	0	•	May need to use two separate analytical techniques, depending on the concentration
Turbidity	•	•	0	•	

Can almost always (>80% of samples) distinguish this discharge from clean flow types (e.g., tap water or natural water). For tap water, can distinguish from natural water.

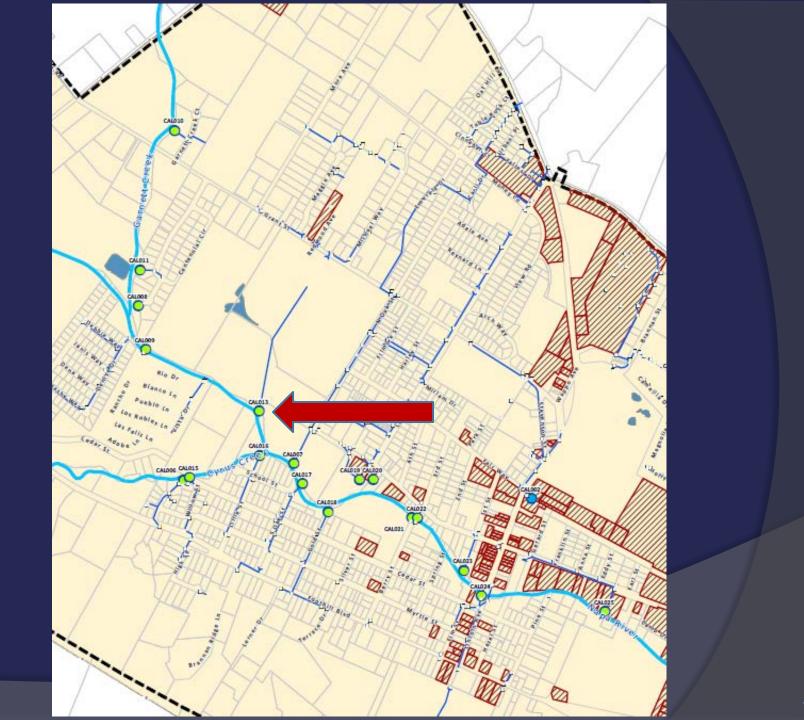
Can sometimes (>50% of samples) distinguish this discharge from clean flow types depending on regional characteristics, or can be helpful in combination with another parameter

O Poor indicator. Cannot reliably detect illicit discharges, or cannot detect tap water N/A: Data are not available to assess the utility of this parameter for this purpose. Data sources: Pitt (

^{*}Fluoride is a poor indicator when used as a single parameter, but when combined with additional parameters (such as detergents, ammonia and potassium), it can almost always distinguish between sewage and wash water.

In case of discharge...

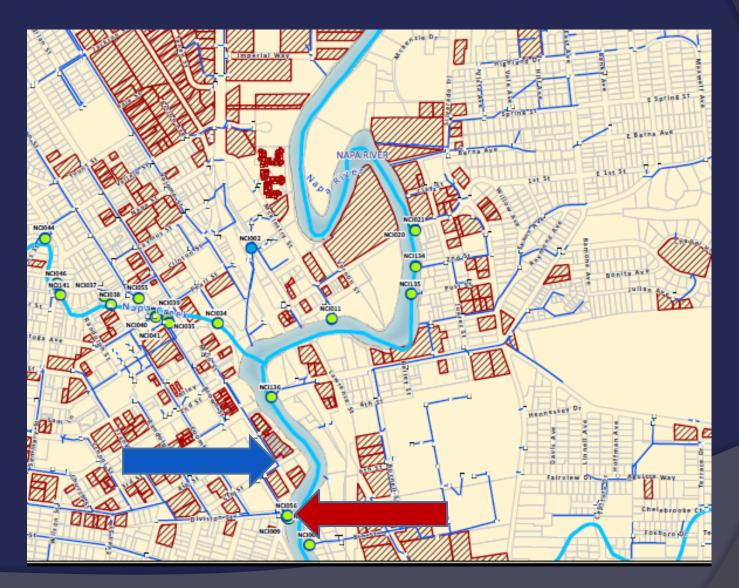
- Results > Action Levels?
 - Required to Investigate


- Results < Action Levels?</p>
 - Investigate anyway...until you get to know the discharge

Results - 2014

- 304 outfalls assessed (visited)
 - 29 were flowing
 - 28 were sampleable
 - 6 exceeded action levels
 - 2 valid exceedances
 - 2 investigations
 - √ 4 Tidal
 - √ 1 Groundwater Discharge
 - √ 1 Confirmed Illicit Discharge

Culprit? Construction

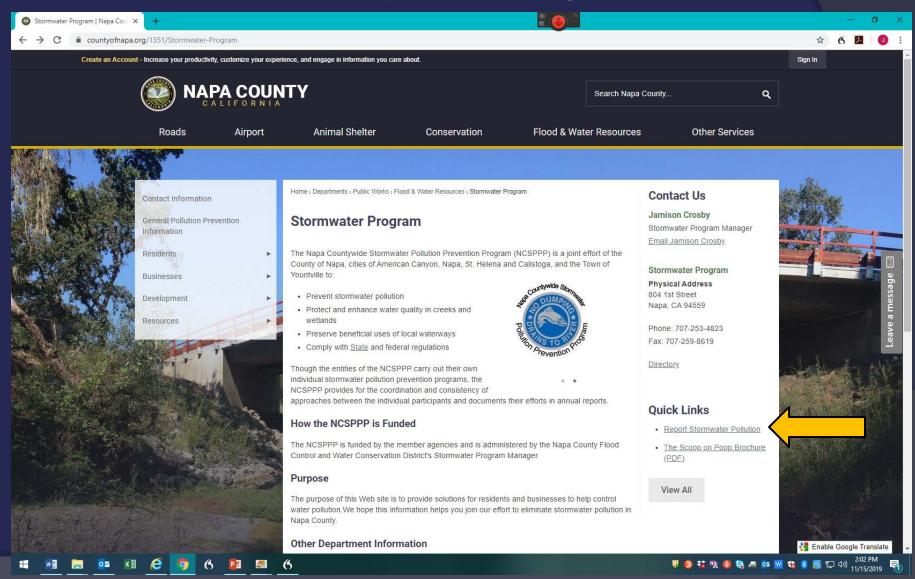

Outfall ID	Color (color units)	Conductivity (µS/cm)	Detergents (mg/L)	Hardness (mg/L)	Hd	Turbidity (NTU)	Potassium (mg/L)	Ammonia (mg/L)
CAL013	>500	1,457	NA	216	7.47	2,467	0	20
NCI056	20	19,550	2.5	3,410	7.42	1.79	60	10
NCI006*		32,050						
NCI049*		32,300				-		
NCI137*								
NCI186*	-	25,710						

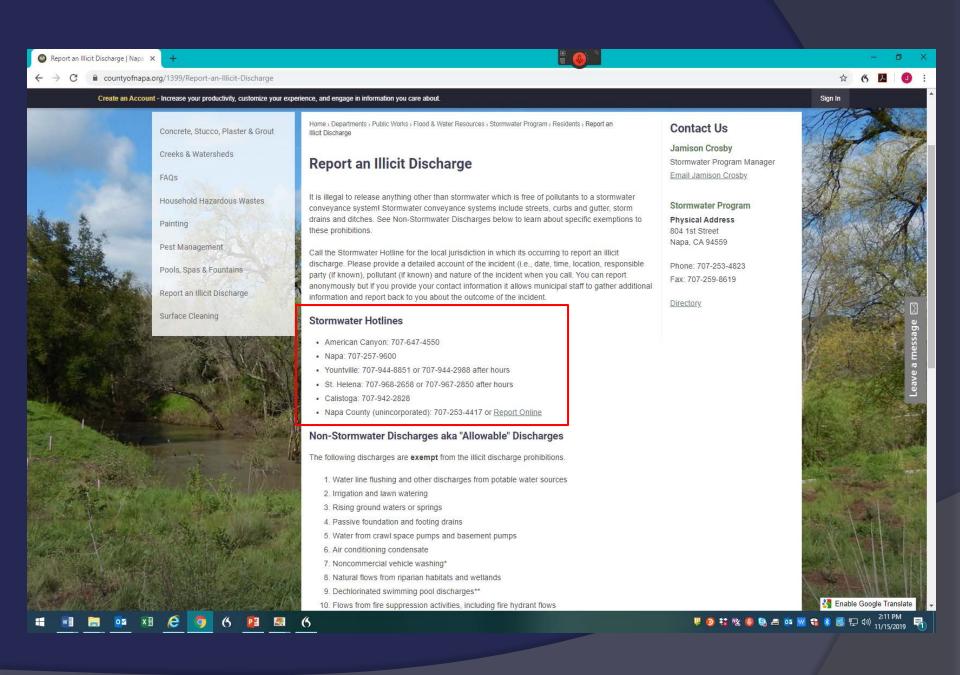
Results - 2019

- All 162 "Priority" outfalls assessed
 - 35 were flowing
 - 34 were sampleable
 - 0 exceeded action levels however...
 - 2 were voluntarily investigated based on appearance, odor and/or detergents results
 - √ 1 Confirmed Illicit Discharge
 - X 1 discharge could not be confirmed and second visit to the outfall showed no flow
 - More limited suite of analytes flow strength, color, odor, EC, pH and turbidity (no NH4, detergents, hardness or K)

A Word About Groundwater Discharges

Big Picture


- Total cost ~ \$138,000 over 6 years
- Total man hours ~ 1,338
- Valuable effort to establish baseline
- Best way forward
 - Ideas?


Table 6. Ston	n Drair	ı Outfall	Assessment	: Summary
---------------	---------	-----------	------------	-----------

Item	2014	2015	2016	2017	2018	2019	Total
Outfalls Assessed	304	156	156	159	163	162	1,100 159
Outfalls Discharging	29	14	26	31	24	35	159
Discharges Sampled and Analyzed	28	13	25	31	23	34	154
Source Investigations	2	0	2	1	3	2	10
Illicit Discharges Detected and Reported	1	0	0	1	1	0	3

To Report an Illicit Discharge

http://www.countyofnapa.org/stormwater/

Illicit Discharge Reporting

- American Canyon: 707-647-4550
- Napa: 707-257-9600
- Yountville: 707-944-8851 or 707-944-2988 after hours
- St. Helena: 707-968-2658 or 707-967-2850 after hours
- Calistoga: 707-942-2828
- Napa County (unincorporated):
 707-253-4417 or Report Online

Questions?

253-4823

Jamison.Crosby@countyofnapa.org