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Rivers around the world are being regulated by dams to accom-
modate the neads of a rapidly growing global population. These
regulatory efforts usually oppose the natural tendency of rivers to
flood, move sediment, and migrate. Although an economic benefit,
river regulation has come at unforeseen and unevaluated cumu-
lative ecological costs. Historic and contemporary approaches to
remedy environmental losses have largely ignored hydrologic,
geomorphic, and biotic processes that form and maintain healthy
alluvial river ecosystems. Several commonly known concepts that
govern how alluvial channels work have been compiled into a set
of “attributes” for allwvial rver integrity. These attributes provide
a minimum checklist of critical geomorphic and ecological pro-
cesses derived from field observation and experimentation, a set of
hypotheses to chart and evaluate strategies for restoring and
preserving alluvial river ecosystems. They can guide how to (i)
restore alluvial processes below an existing dam without neces-
sarily resorting to extreme measures such as demolishing one, and
(i) preserve alluvial river integrity below proposed dams. Once
altered by dam construction, a regulated alluvial river will never
function as before. But a scalad-down morphology could retain
much of a river's original integrity if key processes addressed in the
attributes are explicitly provided. Although such a restoration
strateqy is an experimeant, it may be the most practical solution for
recovering regulated alluvial river ecosystems and the species that
inhabit them. Preservation or restoration of the alluvial river
attributes is a logical policy direction for river management in the
future.

S ince the 1990s, the physical and environmental consequences
of river alteration and management have been openly ques-
tioned. Continued increases in flood losses, both financial and
human, and the unanticipated and unwanted results of dams and
channel straightening, invite reevaluation of river management.
Reevaluation has even led to removing existing dams (e.g.. Butte
and Clear creeks in California, Elwha River in Washington), as
well as implementing experimental releases of high flows (1, 2).

Historically, river policymakers and resource managers have

imposed on the river ecosystem (e.g., a recommended flow
release), we should expect a response (e.g., scouring sand from
a pool). The significance of an impetus will depend on an
appropriate threshold beyond which a specific response is ex-
pected. A process, therefore, is comprised of an impetus and an
expected response. To use the alluvial river attributes as guide-
lines for recovering or preserving critical processes, one must
consider how the magnitude, duration, frequency, and timing of
an impetus will exceed a threshold to produce a desired response.
Rarely, however, is a single impetus imposed on a river ecosys-
tem associated with a single response.

Floods are primary impetuses for all alluvial river morphology.
An increase in discharge may initiate bed surface movement and
bank erosion, once the force exerted by the flood event (the
impetus) has passed some threshold for movement or erosion.
This threshold may require a specific flow magnitude and
duration before producing a significant morphological response.
The timing and frequency of the flood also may have profound
effects on a species or a population. Mobilizing sand from a pool
in January may smother salmon eggs incubating in the down-
stream riffle. The impetus, therefore, cannot be prescribed as a
simple measure of force, nor can the total reaction be as
succinctly quantified or even fully anticipated. It is with this
backdrop of uncertainty that the attributes were compiled.

The Allwvial River Attributes

The alluvial river attributes (3) can help river managers identify
desired processes, then help prescribe necessary impetuses based
on useful empirical relationships and thresholds developed by
river geomorphologists and ecologists. All of the concepts
deriving the alluvial attributes have been described among a
wide range of professional journals, technical books, and agency
reports (reviewed in ref. 2), but their compilation has not been
previously published. They may not apply equally to all alluvial
river ecosystems. Some rivers may not be capable of achieving
certain attributes because of overriding constraints, e.g., a river
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NAPA VALLEY
HISTORICAL ECOLOGY ATLAS

EXPLORING A HIDDEN LANDSCAPE OF TRANSFORMATION AND RESILIENCE

ROBIN GROSSINGER
Design and Cartography by RUTH ASKEVOLD
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Drawing by Brian Maebius
from July 2012 Bay Nature
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Historical and modern annual hydrographs




Napa River Sub-watersheds
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Napa River’s Riparian Forest
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Adapting to Climate Change
State of the Science for North Bay Watersheds
A Guide for Managers
December 2010

Average annual temperatures and precipitation, 1971-2000

A report prepared for the North Bay Watershed Association
by the Dwight Center for Conservation Science at Pepperwood
in partnership with the US Geological Survey and
the Bay Area Open Space Council

Lisa Micheli, Pepperwood
Lorraine Flint, US Geological Survey
Alan Flint, US Geological Survey
Morgan Kennedy, Pepperwood
Stuart Weiss, Creekside Center for Earth Observations and
Ryan Branciforte, Bay Area Open Space Council
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Widening and Restoration
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Stag’s Leap vineyard
Photo courtesy of Sandy Elles

o~ e g i 5
gl - P o0 e s e,

Juvenile steelhead and chinook salmon
Photo courtesy of Jonathan Koehler















Channel Incision
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Napa Valley, sarly 180as and ca. 3010, These viewns of the Mapa Valley two conturies apart
highlight the dramatic transformation since Euro-American settiement. Changes include the

reduction in th of hat and th f an array of new habitat types. At
the same time, numerows remnant and newly-formed native habitats can be identified {although
they are difficult 10 see at this scale), linking the past and present lancscape and suggesting the
range of potential trajectories in the future. Contemporary map based on Thome et al (2004)
and SFE| [3011b]. Acreages comesponding 10 the pie charts are shown on page 145
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