Geotechnical Investigation Report Oakville to Oak Knoll (OVOK) Reach Napa River Restoration Napa County, California

SUBMITTED TO:

Mr. Jorgen Blomberg ESA PWA 550 Kearny Street, Suite 900 San Francisco, CA 94108 JBlomberg@esassoc.com

September 26, 2013 FINAL DRAFT

TABLE OF CONTENTS

1.00	INTRODUCTION	1
1.01	Project Description	1
1.02	Purpose and Scope of Services	1
1.03	Identification/Characterization of Hardpan Deposits - Overview	2
1.04	Report Organization	3
2.00	METHODS OF INVESTIGATION	3
2.01	Review of Existing Information	3
2.02	Geologic Mapping of Hardpan Deposits	3
2.03	Geotechnical Site Reconnaissance Visits	3
2.04	Subsurface Explorations	3
2.05	Laboratory Testing	4
3.00	GEOLOGIC AND SEISMIC SETTING	5
3.01	Regional Faults and Seismicity	5
3.02	Regional Geology	5
3.03	Local Geology	6
3.03	.1 Topography and Geomorphology	6
3.03	.2 Bedrock Geology	7
3.03	.3 Old Alluvium	7
3.03	.4 Younger Alluvium	8
3.03	.5 Youngest Alluvium	8
3.04	Napa County Hazard Mapping	9
4.00	SITE CONDITIONS	10
4.01	Hardpan Deposits	10
4.01	.1 Overview	10
4.01	.2 Geologic Mapping of Hardpan Surface Exposures	10
4.01	.3 Geotechnical Characterization	11
4.01	.4 Identification of Hardpan Deposits in Boreholes	11
4.02	Phase 1 Project Reach Site Conditions	13
4.02	.1 General	13
4.02	.2 Site 28	13
4.02	.3 Sites 27 and 29	13
4.02	.4 Sites 26A through 26E	15
4.02	.5 Site 22	16
4.02	.6 Site 19	17
4.02	.7 Sites 14, 15, 16, 17, and 18	18
4.03	Phase 2 Project Reach Site Conditions	20
4.04	Groundwater	20
5.00	EVALUATIONS AND CONCLUSIONS	
5.01	General	
5.02	Hardpan Deposits	
5.03	Slope Stability	
5.04	Seismic Hazard Potential	
5.05	Lateral Curve dia a	
5.06	Lateral Spreading	
5.07	Seismic Siope Displacement	
5.08	Cur Slopes	
5.09	Construction Considerations	
6 00	RECOMMENDATIONS	JE
0.00	REGUIVIIVIEINDATIONS	23 عد
0.01		

6.02	Site Preparation	25
6.03	Earthwork	
6.03	.1 Fill Materials	26
6.03	.2 Subgrade Preparation	26
6.03	.3 Engineered Fill Placement	27
6.04	Surface Drainage	27
6.05	Maintenance	27
6.06	Future Geotechnical Services	27
7.00	LIMITATIONS	28
REFEREN	NCES	29

PLATES – 1 through 9 FIGURES – 1 through 21

APPENDICES

Appendix A – Boring Logs Appendix B – Laboratory Test Data Appendix C – Slope Stability Results Appendix D – Liquefaction Analyses Results Appendix E – Site-Specific Evaluations and Recommendations

September 26, 2013

Mr. Jorgen Blomberg ESA PWA 550 Kearny Street, Suite 900 San Francisco, CA 94108 JBlomberg@esassoc.com

RE: Geotechnical Investigation Report – Final Draft Napa River Restoration Project Oakville to Oak Knoll (OVOK) Reach Napa County, California

Dear Mr. Blomberg,

This report presents the results of our geotechnical investigation for the Napa River Restoration Project, Oakville to Oak Knoll (OVOK) reach. Following the text of this report are a list of references, illustrative Plates, technical Figures, and Appendices. A3GEO's services in this phase were authorized under ESA PWA's Agreement for Subconsultant Services dated October 30, 2012, which references our October 2, 2012 proposal. Additional services were subsequently authorized per our December 10, 2012 scope and fee estimate.

1.00 INTRODUCTION

1.01 Project Description

The project includes floodplain restoration, active channel widening, managed bank retreat and related modifications along one or both sides of the Napa River and some of its subparallel tributary channels between Oakville Road (upstream) and Oak Knoll Avenue (downstream). Currently, there are 28 restoration areas (Sites) within the OVOK reach. The sites are numbered sequentially starting with Site 1 near the downstream end. As shown on the Vicinity Maps on Plates 1 and 2, the OVOK reach is segmented into two non-contiguous phases:

Phase 1 Project Reach – extends from Oakville Road south to near the town of Yountville (Plate 1) and includes 18 Sites: Sites 14 through 23; 26A through 26E; and 27 through 29 (Figure 1, Phase 1 – Overview).

Phase 2 Project Reach – extends from near the town of Yountville south to Oak Knoll Road (Plate 2) and includes 10 Sites: Sites 1 through 3; 5; 7 through 10; 12 and 13 (Figure 2, Phase 2 – Overview).

Design-level documents are currently being prepared for selected sites within Phase 1 Project Reach Sites, only. A special design consideration for the OVOK reach is a hardpan deposit (previously mislabeled by others as Huichica clay) present locally within portions of the river channel. This deposit forms bold outcrops, is highly resistant to erosion, and is typically un-vegetated where currently exposed in the river channel. We understand that planning-level concepts include minimizing/mitigating exposures of this resistant material within the modified channel and floodplains.

1.02 Purpose and Scope of Services

The primary purpose the geotechnical and geologic services outlined in this report was to provide the geotechnical data, evaluations, conclusions and recommendations needed for the: 1) design and construction of the Sites in the Phase 1 Project Reach for which design-level documents are currently being prepared; and 2) planning of future restoration activities for Sites in the Phase 2 Project Reach.

As outlined in our October 2 proposal and December 10, 2012 scope and fee estimate, the scope of our investigation consisted of:

- Reviewing available geotechnical, geologic and seismic information;
- Observing and documenting geotechnical/geologic conditions;
- Conducting detailed geologic mapping of hardpan deposits;
- Drilling geotechnical borings and installing standpipe piezometers;
- Performing geotechnical laboratory tests;
- Identifying hardpan deposits in borings and subsurface samples;
- Preparing geologic cross sections;
- Evaluating liquefaction potential and other seismic effects;
- Developing conclusions and recommendations pertaining to the geotechnical aspects of the project; and
- Preparing this geotechnical investigation report.

Since there are no structures planned, California Building Code seismic design criteria are not needed for the restoration design. Also, the scope of our services did *not* include an environmental assessment or investigation for the presence of hazardous, toxic, or corrosive materials on, below, or around the planned restoration sites.

1.03 Identification/Characterization of Hardpan Deposits - Overview

Based on our research, analyses, geologic mapping and subsurface exploration, we interpret the hardpan deposits identified in surface exposures in and along the Napa River (and in our recent boreholes) within the OVOK reach as old alluvial fan deposits of Late Pleistocene age (greater than about 30,000 years old). Old alluvial fan deposits have been reported along the south reaches of the Napa River, north of the City of Napa, and both north and south of Oak Knoll Road (Kunkel and Upson, 1960). The noted exposures of old alluvial fan deposits by Kunkel and Upson correspond to the area of Site 1 (Phase 2) of our study area (cover photo). Generally, these deposits are described by Kunkel and Upson as poorly to moderately cemented clay, silt, and sand with varying amounts of gravel and some reworked tuff. During the early planning phases of this project, these old alluvial fan (i.e., hardpan) deposits were misinterpreted by some as belonging to the Huichica Formation, presumably due to their erosional resistant nature and similar lithologic characteristics. More detailed information pertaining to the identification and characterization of these hardpan deposits is presented in Section 4.01 of this report.

According to published literature, rocks assigned to the Huichica Formation have been identified in isolated surface exposures in the hills above Napa and Sonoma Valleys, in more extensive areas in the hills north of the tidal marshlands of San Pablo Bay and beneath Napa and Sonoma Valleys in water well borings drilled in the 1940s and 1950s. The Huichica Formation, identified in old water wells, rests directly on bedrock (Sonoma Volcanics) in the Napa Valley and may be as much as 900 feet thick (Kunkel and Upson, 1960). Generally, the Huichica Formation consists of clay, silt, sand, gravel and reworked tuff. These lithologies are similar to those described for the old alluvial fan (hardpan) deposits; however, some beds of the Huichica Formation observed in outcrops are strongly deformed and rest unconformably on tilted bedrock. This is not the situation for the old alluvial fan (hardpan) deposits. The age of the Huichica is interpreted as Early Pleistocene to Pliocene in age (between about 5.5 and 0.8 million years before present [Ma]) whereas the hardpan deposits are interpreted as Late Pleistocene in age (greater than about 30,000 years old). Clahan and others (2004) note that a tuff interbed within the Huichica has been dated using Potassium-Argon methods to be about 4 Ma.

A recent geologic map published by the California Geological Survey (Clahan and others, 2004) maps the closest surface exposures of the Huichica Formation in the hills northeast of the City of Napa, approximately 1.3 miles southeast of the southernmost point of the project site. No Huichica deposits have been mapped in or along the Napa River in any of the published geologic maps reviewed (Bezone and others, 2005; Clahan and others, 2004; Clahan and others, 2005; Ellen and Wentworth, 1995; Fox, 1983; Fox and others, 1973; Graymer and others, 2007; Wagner and Gutierrez, 2010; and Weaver, 1949).

1.04 Report Organization

The remainder of this report is organized as follows:

Section 2.00 describes our methods of investigation;
Section 3.00 describes the site geologic and seismic setting based on a review of pre-existing information;
Section 4.00 characterizes the site conditions based on new and existing data;
Section 5.00 presents our geotechnical evaluations and conclusions for the Phase 1 Project Reach;
Section 6.00 presents our recommendations for the project; and
Section 7.00 outlines the limitations of our study.

Following the illustrative plates and figures are five appendices:

Appendix A presents logs of borings from this investigation and previous investigations; Appendix B presents laboratory test data; Appendix C presents slope stability results; Appendix D presents liquefaction analyses results; and Appendix E presents site-specific evaluations and recommendations.

2.00 METHODS OF INVESTIGATION

2.01 Review of Existing Information

A variety of published sources were reviewed to evaluate geotechnical data relevant to the subject site. These sources included geotechnical and geologic literature, reports, and maps published by various public agencies including, but not limited to, topographic, geologic, flooding, liquefaction, and fault zone maps published by the U.S. Geological Survey (USGS), the California Geological Survey (CGS) (formerly the California Division of Mines and Geology) (CDMG), and Napa County. Information obtained from our review of published information is discussed in Section 3.00, Geologic and Seismic Setting. A list of the references used in our investigation is presented at the end of this report.

2.02 Geologic Mapping of Hardpan Deposits

Mr. Patrick Drumm, CEG of A3GEO, performed a detailed geologic reconnaissance of the river channel during which he identified and mapped exposures of the hardpan or old alluvial fan deposits, where observed in the river bed and/or banks. Mr. Drumm's mapping was performed on LiDAR-based topographic survey drawings provided by ESA PWA using project survey stakes in the field as locational references. The results of our geologic mapping of hardpan deposits are discussed and presented in Section 4.01.2, Geologic Mapping of Hardpan Surface Exposures.

2.03 Geotechnical Site Reconnaissance Visits

Ms. Dona Mann, GE, of A3GEO visited the site on multiple occasions between October 2012 and May 2013 to: 1) observe geotechnical and geologic features of general interest; 2) coordinate our onsite investigative activities; and 3) identify surface exposures of hardpan deposits. Observations made during our geotechnical site reconnaissance visits are discussed in Section 4.02, Phase 1 Project Reach Site Conditions.

2.04 Subsurface Explorations

Our subsurface exploration program was performed between November 6, 2012 and January 23, 2013, to investigate and sample the subsurface materials. We drilled and logged a total of 46 borings (two of which were converted into standpipe piezometers) at the approximate locations shown on the Site Plans, Figures 5 through 9 (Phase 1) and Figures 13 through 21 (Phase 2). The borings extended to depths that varied between 10.0 and 29.5 feet below the ground surface. Most borings were drilled along the existing

riverbanks and generally extended to the approximate thalweg elevation of the adjacent channel. The exceptions were the relatively shallow borings (10.0 to 11.5 feet deep) which were drilled on Site 18 to evaluate the conditions for a proposed berm.

North Star Drilling, Inc. of Escalon, California drilled the borings using a truck-mounted drill rig equipped with 4.5-inch solid stem flight augers. Mr. Patrick Drumm, CEG, of A3GEO logged the borings, directed the drilling, and obtained samples at frequent intervals. Soil samples were obtained using a 2-inch outside diameter (O.D.) Standard Penetration Test (SPT) sampler without liners and a 3-inch O.D. California Modified sampler with liners. The samplers were driven with a rope-and-cathead-activated 140-pound hammer falling 30 inches. The hammer blows required to drive the sampler the final 12 inches of each 18-inch drive are presented on the boring logs. Sampler blow counts presented on the logs are adjusted N-values. Blow counts have been adjusted for sampler type only. Following the field operations, the borings were immediately grouted, except where piezometers were installed.

During drilling, Mr. Drumm visually/manually classified the soil in general accordance with ASTM D2488 classifications which are based on the Unified Soil Classification System (USCS). Field classifications were subsequently checked and revised, where appropriate, based on laboratory test data. The logs of the borings are attached in Appendix A preceded by a Key to Exploratory Boring Logs that describes the USCS and the symbols used on the logs.

Please note that the attached boring logs and related information depict subsurface conditions only at the approximate locations shown on the Site Plans on the particular date designated on the boring logs. The attached boring logs represent our interpretation of the subsurface materials at the boring locations at the time of drilling and the passage of time may result in changes in the subsurface conditions. Groundwater elevation may be higher or lower than observed during drilling due to multiple factors, including seasonal rainfall. The boring locations indicated on the attached figures were determined by measuring from existing surveyor stakes located at 500-foot stations along the riverbank and should be considered approximate. A summary of our findings from our subsurface exploration can be found in Section 4.02, Phase 1 Project Reach Site Conditions.

2.05 Laboratory Testing

Our geotechnical laboratory testing program was directed toward a quantitative and qualitative evaluation of the physical properties of the soils that underlie the site. The following geotechnical laboratory tests were performed:

- Water content per ASTM Test Designation D-2216;
- Dry density per ASTM Test Designation D-2937;
- Atterberg Limits per ASTM Test Designation D-4318;
- Percent minus #200 sieve per ASTM Test Designation D-1140;
- Grain size distribution per ASTM Test Designation D-422; and
- Slaking.

Although beyond the scope of our investigation, we also performed thin-section analyses using a petrographic microscope for selected samples of hardpan deposits in order to evaluate the mineralogy of the soil matrix and individual grains. Hardpan deposit samples were selected for thin-section analyses because field identification during the geologic mapping phase of the project suggested volcanic ash deposits were present where none had been previously mapped or because of geotechnical laboratory test results (i.e., slake testing).

The results of the laboratory tests are summarized in Appendix B and are also presented on the boring logs at the corresponding sample depths. The laboratory test data sheets are included in Appendix B.

3.00 GEOLOGIC AND SEISMIC SETTING

3.01 Regional Faults and Seismicity

The Napa River and Napa Valley are within the San Francisco Bay portion of the Coast Ranges Geomorphic Province of California, a region characterized by northwest-trending mountain ranges and intervening valleys. In the context of global plate tectonics, the Coast Ranges are located near the boundary between two crustal plates, the North American Plate and the Pacific Plate. The characteristic topography of the region formed through a complex series of processes that have included deposition, accretion, faulting, folding, uplift, volcanism and changes in sea level.

Locally, the relative motion of the Pacific and North American crustal plates is presently accommodated by a series of seismically active northwest-trending faults that occur over a deformation zone of more than 50 miles. Faults that are defined as seismically "active" exhibit one or more of the following: (1) evidence of Holocene-age (within about the past 11,000 years) displacement, (2) measurable aseismic fault creep, (3) close proximity to linear concentrations or trends of earthquake epicenters, and (4) prominent tectonic-related aseismic geomorphology. By comparison potentially active faults are defined as those that are not known to be active, but exhibit evidence of Quaternary-age displacement (within about the past 2 million years).

The closest major active faults to the site include the Green Valley fault located approximately 6 miles to the southeast and the Rogers Creek fault zone located approximately 16 miles to the southwest (Jennings and Bryant, 2010). There is a small portion of the West Napa fault zoned as active which is located approximately 4 miles to the south (near the Napa Airport). Other major faults in the region include the Soda Creek fault (approximately 3 miles east), the Maacama fault (approximately 25 miles northwest), the Hunting Creek fault (approximately 27 miles northeast), and the San Andreas fault (approximately 35 miles west) (Jennings and Bryant, 2010). The site is not within an Alquist-Priolo Earthquake Fault Zone as designated by the State of California for active faults and no active faults have been mapped in the direct vicinity of the project site (Bryant, 1982; Hart and Bryant, 1997; and Wesling and Hanson, 2008).

The geologic maps presented on Plates 5 and 6 and Figures 3 and 4 show surface traces of various, mostly north or northwest-trending faults, none of which are zoned as Holocene-active. Note that other faults may exist below the valley floor that are not mapped because their presence is obscured by alluvium.

Since 1836, six earthquakes of magnitude 6.5 or greater have occurred in the Bay Area (Bakun, 1999). The largest earthquake that has occurred within the region during historic time is the 1906 San Francisco Earthquake. Recent estimates of the moment magnitude (M_W) of this event are 7.7 and 7.9. During the 1906 San Francisco Earthquake, the San Andreas fault ruptured over a length of almost 300 miles from near Shelter Cove in the north to near San Juan Bautista in the south. Active faults that are closer to the site (e.g. the Green Valley and Rogers Creek faults) have not produced a major earthquake in historic time (i.e. since before 1776).

Studies by the USGS's Working Group on California Earthquake Probabilities have estimated a 63 percent probability of at least one magnitude 6.7 or greater earthquake occurring in the San Francisco Bay Region before the year 2037 (WGCEP, 2008). This seismicity estimate is dominated by the Rogers Creek-Hayward (southeast continuation) and San Andreas fault systems, for which the probabilities of a magnitude 6.7 or greater earthquake during this time period are estimated to be 31 and 21 percent, respectively. The corresponding probability estimate for the Green Valley-Concord (southeast continuation) fault system is 3 percent.

3.02 Regional Geology

The west side of the Napa Valley is generally composed of Jurassic-Cretaceous Franciscan Complex rocks and the east side of the valley is generally composed of Cretaceous Great Valley rocks, both considered "basement" rock complexes, that commonly occur elsewhere in the San Francisco Bay Area

(Ellen and Wentworth, 1995; Graymer and others, 2007; Wagner and Bortugno, 1982; and Wagner and Gutierrez, 2010); The Great Valley and the Franciscan Complex are of Mesozoic age (225 to 65 million years old). The Mesozoic basement rocks are locally overlain by or juxtaposed with a diverse sequence of Cenozoic Era (younger than 65 million years) sedimentary and volcanic rocks, which include the Sonoma Volcanics. Since their deposition, the Mesozoic and Cenozoic rocks have been extensively deformed by repeated episodes of folding and faulting. The Bay Area experienced several episodes of uplift, faulting and volcanism during late Tertiary Period (about 25 - 2 Ma) that produced the region's characteristic northwest-trending mountain ranges and valleys. Incremental movements along active strike-slip faults have produced large-scale lateral displacements of land masses throughout the region. At times, some structural basins that now drain to the Pacific Ocean were closed thereby accelerating the rate at which sediment was deposited within them.

Worldwide climate fluctuations during the Pleistocene (about 1.8 million to 11 thousand years ago) resulted in several distinct glacial periods. A lowering of sea level accompanied each glacial advance as water became stored in vast continental ice sheets and alpine glaciers. Melting of the continental glaciers during warm intervals caused corresponding rises in sea level. High sea levels favored rapid and widespread deposition in the bay and surrounding floodplains. Low sea levels during glacial advances steepened the gradients of streams and rivers draining to the sea thereby encouraging erosional channel downcutting. The most recent glacial interval ended about 15,000 years ago. Evidence suggests that during the maximum extent of this latest glaciation, sea level was 300 to 400 feet below its present elevation and streams draining the Great Valley flowed to the Pacific Ocean more than 30 miles west of the Golden Gate (Helley and Lajoie, 1979).

Near the beginning of the Holocene age (about 11 thousand years ago) the rising sea re-entered the Golden Gate, and sediments accumulated rapidly beneath the rising San Francisco Bay and on the surrounding floodplains. The Holocene-age surface deposits are generally less consolidated and weaker than the adjacent/deeper Pleistocene-age soils that predate the last sea level rise.

3.03 Local Geology

3.03.1 Topography and Geomorphology

The Vicinity Maps presented on Plates 1 and 2 utilize California Geological Survey 7.5-minute topographic maps (Rutherford, Yountville and Napa Quadrangles) as a base. Aerial images of the site vicinity are presented on Plate 3; the oblique imagery presented on the lower half of Plate 3 includes vertical exaggeration.

The portion of the Napa Valley containing the OVOK Reach is approximately 3 miles wide and is bordered on the east and west by north-northwesterly-trending mountain ranges that rise abruptly one to two thousand feet above the valley floor. The valley floor is locally punctuated by isolated bedrock hills, the largest of which rise about 400 feet above the valley floor. Within the OVOK Reach, the Napa River flows along the base of hills at two principal locations north and east of Yountville (Plates 1 and 2). At the northern (upstream) end of OVOK reach, the elevation of the valley floor adjacent to the river channel is about 130 feet above mean sea level (AMSL). At the southern (downstream) end of OVOK Reach, the elevation of the valley floor is about 55 feet AMSL.

Within the OVOK Reach, the Napa River flows within locally incised and eroded channels that are up to 25 feet deep. Within Phase 1, the Napa River flows within a single channel in part due to the localized constraints imposed by the hills to the north and east of Yountville. Downstream of the hills (within Phase 2), the river splits into two channels for a horizontal straight-line distance of about 4,600 feet before recombining into a single channel. Near the southern end of Phase 2, the natural floodplain was once dissected by an array of creeks/drainages entering the Napa River from the north and west; many of these former channels have been filled in as part of vineyard development.

3.03.2 Bedrock Geology

The Napa Valley is a relatively narrow elongate alluvial-filled trough flanked by bedrock mountains with isolated bedrock hills locally punctuating the valley floor. Various researchers have prepared maps of this general area depicting surficial geologic units as well as bedrock structure. The CGS maps of local geology presented on Plates 5 and 6 provide information on the geologic context of the site relative to the Napa Valley. Enlarged versions of these maps presented on Figures 3 and 4 include overlays showing the approximate locations of planned restoration areas (Sites). Bedrock was not encountered in any of our exploratory borings nor was bedrock observed along any of the reaches of Napa River involved in the proposed restoration sites.

Mesozoic (Jurassic to Cretaceous age) sedimentary rocks assigned to the Great Valley Sequence (map symbol KJgv) and the Franciscan Complex (map symbol KJfs) underlie much of the mountain range to the west of the OVOK Reach. Franciscan Complex rocks are also mapped locally along the eastern side of the valley within the bedrock hills east of Yountville. Miocene-age rocks of the Stags Leap stock (map symbol Tgisl) are mapped on the northeast side of the Napa River adjacent to the hills east of Yountville. Younger Miocene to Pliocene age volcanic rocks exist locally within the valley, along the western valley margin and throughout much of the mountain range to the east of the OVOK Reach. The diverse sequence of volcanic rocks shown comprises subunits within the Tertiary age Sonoma Volcanics (map symbol prefix Tsv). The bedrock units/subunits mapped closest to the Napa River are described on the CGS maps as follows (from oldest to youngest):

Map symbol Tgisl - Stags Leap stock (Figure 4) - Coarse to fine-grained granitic intrusive with abundant quartz veining and hydrothermal alteration. Map symbol Tsvabsl (Figures 3 and 4) - Andesite flow breccia of Stags Leap

Map symbol Tsvr (Figure 3) – Undifferentiated rhyolite lava flows, and flow breccias. Light grey to dark grey

Map symbol Tsvdg - Dacite of Mt. George (Figures 3 and 4) - Flows, domes and shallow intrusions of gray to tan porphyritic dacite. The dacite is typically strongly flow banded. The upper surfaces of flows and the margins of domes and intrusions are commonly perlitic. The base of the flows is a black porphyritic pitchstone and pitchstone breccia. K-Ar ages for the dacite on the Mt. George quadrangle are 4.3±0.2 and 3.73±1.23 Ma (Mankinen, 1972; Fox and others, 1985).

3.03.3 Old Alluvium

The thickness of alluvial deposits in the vicinity of the OVOK Reach is likely highly variable and has not been clearly defined in the literature. Within the Napa Valley, it is thought that alluvium may be 1,000 or more feet thick in isolated areas affected by possible buried faults (Luhdorff & Scalmanini, 2012; and Weaver, 1949). However, the alluvium generally thins near the sides of the valley and close to the isolated hills where bedrock is shallower. The deepest alluvium in the valley is several millions of years old.

Pleistocene-age deposits described on the CGS maps presented on Plates 5 and 6 and Figures 3 and 4 are as follows:

Map Symbol Qoa - Alluvial deposits, undivided (early to late Pleistocene) - Alluvial fan, stream terrace, basin, and channel deposits. Topography is gently rolling with little or no original alluvial surfaces preserved; moderately to deeply dissected.

Kunkel and Upson (1960) describe Older Alluvium as "composed of lenticular deposits of unconsolidated and poorly sorted clay, silt, sand and gravel. Where the alluvium is exposed, claypan or hardpan soil characteristically has developed on the surface. The beds are undeformed." As previously mentioned, Kunkel and Upson (1960) go on to note locations where Older Alluvium is exposed along the Napa River, which include "north of Oak Knoll Avenue a sequence of alternating beds of yellow silt, sand and gravel is exposed" (this location corresponds to Site 1, Phase 2, see cover photo) and "about a half mile north of

Oak Knoll Avenue, the Napa River has exposed yellow hard clay or silt." As shown on Figure 4, Pleistocene-age alluvium (map symbol Qoa) is mapped (at the ground surface) by the CGS near the base of the hills east of Sites 1 through 3.

The hardpan deposits identified within the project sites are similar to the descriptions quoted above. We have interpreted these hardpan sediments as Late Pleistocene alluvial fan deposits (i.e., Old Alluvium).

3.03.4 Younger Alluvium

East of Sites 14 through 17, the CGS maps Quaternary age (Pleistocene and Holocene) alluvial fan deposits described as follows:

Map Symbol Qf - Alluvial fan deposits (latest Pleistocene <~30,000 years to Holocene) - Sand, gravel, silt and clay mapped on gently sloping, fan-shaped, relatively undissected alluvial surfaces.

Other alluvial deposits mapped by the CGS in the vicinity of OVOK reach are interpreted as Holocene age (< 11,000 years old). These deposits include:

Map Symbol Qha - Alluvium, undivided (Holocene) - Alluvium deposited on fans, terraces, or in basins; composed of sand, gravel, silt, and clay that are poorly sorted.

Map Symbol Qhf - Alluvial fan deposits (Holocene) - Alluvial fan sediment deposited by streams emanating from mountain drainages onto alluvial valleys; composed of moderately to poorly sorted sand, gravel, silt and clay.

The younger alluvial deposits (Pleistocene and Holocene age) consisting of fan deposits described above and shown on the published geologic maps for the project site (Figures 3 and 4) are present along the Napa River. These younger deposits are statigraphically above and in many locations, directly cap the Late Pleistocene alluvial fan deposits identified and geologically mapped by us along the proposed river restoration sites for the Napa River.

3.03.5 Youngest Alluvium

Within OVOK reach, the alluvial deposits mapped within and proximate to the river channel are mapped by the CGS as less than 1,000 years old. Note that geologic maps of this scale and purpose: 1) show geologic units interpreted to be present at or near the ground surface; and 2) are not mapped at the level of detail that would be needed to discriminate different geologic units that may be visible in river banks or other localized exposures. Within the OVOK Reach, most of the near-surface soils blanketing the valley floor outside of the river channels are mapped on Figures 3 and 4 as:

Map symbol Qhty - Stream Terrace Deposits (latest Holocene < 1,000 years) Stream terraces deposited as point bar and overbank deposits; composed of moderately sorted clayey sand and sandy clay with gravel.

Near the northern end of the project (northeast of Sites 27 and 28) the surficial valley floor deposits are mapped as:

Map symbol Qhay - Alluvial deposits (latest Holocene <1,000 years) - Fluvial sediment deposited on the modern flood plains.

Near the far southern end of the project (southwest of Site 1), surficial valley floor deposits are mapped as:

Map Symbol Qhfy – Alluvial fan deposits (Latest Holocene)

Alluvial fan sediments deposited by streams emanating from Dry Creek drainage, composed of moderately to poorly sorted and bedded sand, gravel, silt, and clay.

Within the channel itself, the river bottom deposits are generally mapped as:

Map Symbol Qhc Modern stream channel deposits (Holocene <150 years) Deposits in active, natural stream channels; consists of loose alluvial sand, gravel and silt.

The youngest alluvial deposits (<1,000 years old) consisting of stream terrace, fluvial, and fan deposits described above and shown on the published geologic maps for the project site (Figures 3 and 4) are present along the Napa River. These youngest deposits are statigraphically, above and in many locations, directly cap the Late Pleistocene alluvial fan deposits identified and geologically mapped by us along the proposed stream restoration sites for the Napa River.

3.04 Napa County Hazard Mapping

The Safety Element of the 2009 Napa County General Plan identifies safety hazards within the county including areas that may be prone to earthquake faulting, liquefaction susceptibility, flooding and dam inundation. As shown on Plates 7 through 9, the plan maps the project site within: 1) a very high liquefaction susceptibility zone, 2) the 100-year flood zone, and 3) several Dam Inundation areas.

4.00 SITE CONDITIONS

4.01 Hardpan Deposits

4.01.1 Overview

The hardpan deposits which form bold outcrops along some of the reaches of the Napa River were identified as generally fine to medium-grained, fluvial deposits. These deposits, where geologically mapped along the river channel, generally consist of weakly consolidated, slightly weathered materials including clays, silts and fine to medium-grained sands with varying amounts of reworked tuff. It is important to note that the predominantly fine to medium-grained deposits exist adjacent to and within predominantly coarser-grained, interbedded and lenticular, sands and gravels of the same formation. *The predominantly coarse-grained deposits appear to be less resistant to erosion, are generally not exposed on the terrace surfaces of the bold outcrops as frequently as the finer-grained materials, and for geotechnical purposes, have <u>not</u> been included in our identification of hardpan deposits. Overall, these hardpan deposits and associated interbedded gravel layers have been interpreted as a complex sequence of Late Pleistocene alluvial fan deposits that have not been previously mapped along the project site of the Napa River.*

Because many of the exposed hardpan deposits exhibit a slight inclination or dip (ranging from 3 to 18 degrees with most dips less than 10 degrees) to the northwest, west, southwest, and southeast, they presumably formed from erosion of the nearby bedrock hills along the east side of Napa Valley. The upper portions of some of these bold outcrops observed along the river bank exhibited basal scour contacts with truncated beds and lenticular-bedding, suggestive of reworking of the older alluvial fan deposits by younger fluvial processes (for example in Site 29, Phase 1). Some of the more extensive exposures of hardpan deposits in the channel were separated by a much thinner paleosol indicating a substantial pause in deposition (for example in Site 1, Phase 2). A single isolated deposit of volcanic ash was identified in Site 29 near the top of the bank. Other hardpan deposits contained significant tuffaceous materials, indicating reworking from a volcanic source area. The identification of volcanic tuff materials within the hardpan deposits was only realized by thin-sectioning selected samples and analyzing the sections with a petrographic microscope.

The hardpan deposits within the OVOK Reach exist as lenses, interbeds, and layers and <u>not</u> as a widespread tabular deposit of uniform thickness. The slight inclination/dip of bedding indicates that the deposits have not experienced the same degree of tectonic uplift or tilting reported in the literature for the Huichica Formation or the underlying Sonoma Volcanics (Knudsen and Upson 1960). The spatial distribution of the hardpan deposits identified in the field and in borings appears consistent with alluvial fan development processes, which involves the more or less random deposition of layers/lenses of well-sorted soils transported by streams from adjacent upland areas. *An important aspect of this finding is that the areal extent, thickness and physical characteristics of these hardpan deposits of potential concern are likely to vary considerably and somewhat unpredictably throughout much of the OVOK Reach.*

4.01.2 Geologic Mapping of Hardpan Surface Exposures

In this study, our Certified Engineering Geologist (CEG) mapped the locations of the hardpan deposits, where exposed in the river bed and banks. Within Phase 1, our objective was to geologically map exposures within designated restoration areas (Sites) for design purposes. Therefore, lithologic characteristics and variation were noted, stratigraphic context of fine and coarse layers were determined, and bedding inclination, if present, was collected from outcrops. In Phase 1, field mapping was performed from within the river channel and attempts were made to correlate exposures to nearby borehole data. Within Phase 2, exposures along the river channel and banks were mapped at a level of detail considered appropriate for planning efforts. Areas where slope instability and possible landslide deposits exist were also highlighted along the Phase 2 reaches of the project site.

Detailed maps of the visibly exposed hardpan deposits are presented on the Site Plans, Figures 5 through 9 (Phase 1) and Figures 13 through 21 (Phase 2). Because these deposits are distributed as

layers/lenses interbedded within other old alluvial deposits and are <u>not</u> the upper surface of a deposit of great thickness, inferences pertaining to the presence or absence of hardpan deposits at locations other than those shown may be problematic.

4.01.3 <u>Geotechnical Characterization</u>

A portion of our geotechnical laboratory testing program was directed at characterizing the hardpan deposits exposed within the OVOK reach of the river. The laboratory tests performed for this purpose included determinations of soil plasticity (Atterberg Limits), grain size (particle size distribution) and slaking potential (reaction to submergence in water).

Laboratory tests and visual characterization were performed on bulk samples that we collected from the hardpan deposits exposed within the river channel at six different restoration sites within the OVOK reach. A summary of the laboratory tests performed on the bulk samples from the river is included in the table below:

OVOK BEACH					Particle Size Distribution (% by Weight)								Slake
	Gravel		Sa	nds			Test						
Source / Boring ID	Sample ID or Depth	USCS	Ы	LL	Total	Total Sands	Coarse	Medium	Fine	Total Fines	Silt	Clay	Stability Class
Site 29 River Channel	Bulk 29-1	SC	14	33	9	46	15	16	15	45	18	27	6
Site 22 River Channel	Bulk 22-1	SC	12	34	1	61	2	11	48	38	30	8	3
Site 19 River Channel	Bulk 19-1	SC	21	42	2	67	2	22	43	31	23	8	3
Site 18 River Channel	Bulk 18-1	CL	17	33	4	46	7	22	17	50	19	31	2
Site 17 River Channel	Bulk 17-1	SC	10	32	4	61	10	19	32	35	18	17	6
Site 1 River Channel	Bulk 1-2	CL	25	47	0	14	0	4	10	86	40	46	4

Laboratory Test Results of Hardpan Deposits Collected from River Channel (Bulk Samples)

In general, the hardpan deposits that we tested shared the following geotechnical characteristics:

- Exhibited a mottled appearance usually with yellowish brown to olive brown colors,
- Often contained iron and/or manganese oxide staining,
- Classified as either a lean clay (CL) or clayey sand (SC) based on the Unified Soil Classification System (USCS),
- Contained little to no gravel,
- Contained little to no coarse-grained sand, and
- Contained low to moderately plastic fines (e.g., LL≤47; 14≤Pl≤25).

4.01.4 Identification of Hardpan Deposits in Boreholes

We utilized the laboratory test results obtained from the bulk samples of the hardpan exposures in the river, in combination with our visual observations and geologic mapping, as a guideline to attempt to identify the hardpan deposits in the boreholes. This proved to be difficult for a variety of reasons, but primarily, because: 1) it is not possible to visually identify the age and/or accurately evaluate the grain size percentages of a soil, 2) it is difficult to use 2.5-inch diameter, 12 to 18-inch long samples collected every 5 vertical feet to interpret complex geology, and 3) the samples collected from the borings drilled on the banks did not always match the geotechnical properties of the adjacent hardpan exposures in the channel (e.g., color, density, moisture, plasticity and slaking).

It is important to note that a significant amount of interpretation was involved when trying to identify hardpan deposits from the boring samples. In general, we included soil from the borings as a hardpan deposit if it met all of the following criteria:

- Appeared to be Late Pleistocene in age (i.e., appeared more consolidated),
- Consisted of predominantly fine to medium-grained soils (i.e., clay, silt, and/or fine to medium-grained sand),
- Appeared lighter in color and was occasionally mottled (e.g., generally not dark gray or dark brown)
- Contained little to no gravel,
- Contained little coarse-grained sand, and
- Contained some cohesion (plasticity).

In our identification of hardpan deposits within the borings, it is important to note that we have included soils classified as fat clay (CH), although, none of the bulk river samples were found to be "fat" (i.e., LL≥50). One of the bulk river samples (Bulk 1-2 from Site 1) contained a LL of 47. The fat clay samples tested within the borings were found to be just barely "fat" with liquid limits (LL) of 50 and 51; therefore, it was difficult to exclude these soils from the hardpan grouping.

A summary of the laboratory tests performed on hardpan samples from the borings is included in the table below:

	OVOK BEACH								Particle Size Distribution (% by Weight)							Slake
	OVOR REACH									Sa	nds		F	ines		Test
Source / Boring ID	Sample ID or Depth	uscs	Adjusted Blow Count	PI	LL	Moisture Content (%)	Dry Density (pcf)	Total	Total Sands	Coarse	Medium	Fine	Total Fines	Silt	Clay	Stability Class
B-17-4	11 ft	CH	39	29	50	20	101	1	8	7	1	0	91	39	52	
B-17-4	15.5-16	SC	28	12	35	23	100	5	67	7	32	28	28	14	14	2
B-17-5	10.5 ft	SC	32/6"	24	42	15	109	8	52	10	17	25	40	12	28	
B-17-6	21 ft	CL	32/6"	18	45	29	94	0	17	1	5	11	83	48	35	3+
B-17-7	22 ft	CL	30	22	45	31	91	1	26	3	10	13	73	33	40	3+
B-18-1	21 ft	CH	40	26	51	28	95	0	7	0	2	5	93	43	50	3
B-22-1	21 ft	CH	11	27	51	39	83	0	3	0	1	2	97	82	15	3+
B-26A-1	15.5 ft	CL	5	14	33	29	91	0	44	0	1	43	56	41	15	6
B-29-1	25 ft	SC	32/5"	11	33	18	108	3	61	12	26	23	36	15	21	2

Laboratory Test Results of Hardpan Samples from Borings

4.02 Phase 1 Project Reach Site Conditions

4.02.1 <u>General</u>

Within the northern reaches of Phase 1, the Napa River generally flows from northwest to southeast within a single main channel that passes near the base of bedrock hills north of Yountville. Small tributary creeks enter the Napa River from the west near Sites 27/29 and 26C. After passing the bedrock hills, the Napa River turns easterly before meeting Conn Creek, which joins the Napa River from the north. Between Sites 22 and 15 (approximately), the Napa River and Conn Creek flow within two roughly parallel and interconnected channels. In general, the river channels, banks, and the islands between them are covered with trees and other types of riparian vegetation, whereas valley floor areas outside of the river channels are mostly vineyards.

Topographic conditions within and adjacent to the river are illustrated by the LiDAR-based topographic contours shown on the detailed maps presented on Figures 5 through 9. Brief descriptions of surface and subsurface conditions at Phase 1 Sites follow. The sites are discussed in an upstream to downstream direction (i.e., Site 28 to Site 14). *In all cases, left and right banks of the river are from the perspective of facing upstream.* The approximate locations of our borings are shown on the Site Plans, Figures 5 through 9; logs of the borings are presented in Appendix A.

Extensive hardpan deposits were geologically mapped along the channel and river banks at Sites 22 and 29, and isolated hardpan deposits were observed along the channel at Sites 14, 15, 16, 17, 18 and 19. No obvious hardpan deposits were observed in surface exposures in Sites 26 (all), 27 and 28.

4.02.2 <u>Site 28</u>

Site 28 (Figure 5) is located on the right bank of the Napa River between Station 424+00 and 420+00 at a transition from a broader floodplain to a narrower channel. The channel is about 115 feet wide at its top at Station 420+48.5 (the downstream end of the site); the banks on both sides are terraced. The channel bottom (thalweg) is about 23 feet below the elevation of the adjacent vineyard properties. The channel is characterized by abundant gravel bars separating relatively shallow pools.

At Site 28, we drilled one boring (Boring B-28-1) along the vineyard road near Station 420+00 above the right bank of the channel. In general, Boring B-28-1 encountered medium dense sand with varying amounts of silt and clay which extended to the bottom of the boring at 21.5 feet. Groundwater was measured at a depth of approximately 19.4 feet in B-28-1 at the end of drilling.

No obvious hardpan deposits were exposed in the river channel at the time of mapping and no hardpan deposits were identified in our boring at Site 28.

4.02.3 Sites 27 and 29

Sites 27 and 29 (Figure 5) are located across the river from each other between Station 400+00 and 410+00. Site 27 is on the right interior bank of an outside meander bend, and Site 29 is on the left bank of the inside meander bend. The Napa River is joined by a small tributary at the upstream end of Site 29. The main channel is approximately 140 feet wide at its top at Station 404+43.1 (about the center of the site). The left bank is relatively steep with a slope inclination of about 1:1 (horizontal to vertical) near the top and becoming near vertical near the channel; the right bank is wider and terraced with a maximum inclination of about 3:1. The thalweg is about 25 feet below the elevation of the adjacent vineyard properties. A deep pool (greater than 6 feet) exists along the outside meander bend of Site 29 at Station 405+00 where the base of the stream bank is the steepest.

At Site 27, we drilled one boring (B-27-1) along the vineyard road near Station 405+00. Boring B-27-1 encountered 9 feet of firm, lean clay over 11 feet of medium dense sands and gravels over dense to very dense gravels which extended to the bottom of the boring at 26.5 feet. Groundwater was measured at a depth of about 17 feet at the end of drilling.

At Site 29, we drilled three borings (B-29-1, B-29-2 and B-29-3) along the vineyard road near Stations 407+00, 405+00 and 402+00, respectively. In general, the borings at Site 29 encountered medium dense to very dense sands and gravels, with varying amounts of silt and clay, which extended to the bottom of the borings (25.5 to 26.0 feet). Groundwater was measured at a depth of 23.5 feet in B-29-2 at the end of drilling; groundwater was not encountered in B-29-2 and B-29-3 during drilling.

Figure 5 shows locations of the hardpan deposits mapped within the vicinity of the sites which were exposed within the small tributary near the upstream portion of Site 29 and along most of the Site 29 river bank. A layered sequence of silty fine sand and gravel layers characterize the outside meander bend of the river. An isolated volcanic ash outcrop is part of the sequence of deposits near Station 405+00 where it forms a prominent near vertical slope that extends below the waterline. Figure 10 shows a geologic cross section through Sites 27 and 29 (at Station 404+43.1) identifying the interpreted hardpan deposits and channel geometry. Hardpan deposits were encountered in B-29-1 and B-29-2, but were not encountered in B-27-1 and B-29-3. A summary of the hardpan deposits encountered in each boring is summarized in the table below (BOH = Bottom of Hole):

	Site 27		Site 29	
Depth	B-27-1	B-29-1	B-29-2	B-29-3
0				
1				
2				
3				
4				
5				
6		CL		
7		CL		
8		CL	SC	
9	1	SM	SC	
10		SM	SC	
11		SM	CH	
12		SM	CH	
13		SM	CH	
14		SM	CH	
15		SM	CH	
16			ML	
17				
18				
19				
20				
21				
22				
23				
24		SC		
25		SC	1	
26		BOH	BOH	BOH
27	BOH	at 26'	at 25.9'	at 25.5
	at 26.4'			

CL: Lean Clay; CH: Fat Clay; ML: Silt; SM: Silty Sand; SC: Clayey Sand

4.02.4 Sites 26A through 26E

Within Sites 26A through 26E, our scope of work only included Sites 26A, 26B and 26C (Figure 6) which are located on the right bank of the Napa River between Station 390+00 and 357+00. Site 26A is at the upstream end, and Site 26C is at the downstream end. The Napa River is joined by a small tributary at the upstream end of Site 26C. The main channel is approximately 140 feet wide at its top at Station 385+00 (Site 26A), 140 feet at Station 370+00 (Site 26B) and 115 feet at Station 360+00 (Site 26C). The banks along Site 26A-C vary, but in some cases are steeper than 1:1 (horizontal to vertical). The thalweg is about 25 feet below the elevation of the adjacent vineyard properties.

At Sites 26A, 26B and 26C, we drilled one boring at each site along the vineyard road near Stations 385+00, 370+00 and 360+00, respectively. In general, the borings at Site 26 encountered loose to medium dense sands and gravels, with varying amounts of silt, which extended to the bottom of the borings (21.5 to 26.5 feet). Some layers of firm clay were encountered at Site 26A. Groundwater was measured at a depth of 18 feet in B-26A-1, 20.4 feet in B-26B-1 and 21.7 feet in B-26C-1 at the end of drilling.

No obvious hardpan deposits were mapped along the channel within the vicinity of the sites; however, hardpan deposits were encountered in Boring B-26A-1 between 13 feet and the bottom of the boring at 27 feet. A summary of the hardpan deposits encountered in each boring is summarized in the table below (BOH = Bottom of Hole):

CL: Lean Clay; CH: Fat Clay; ML: Silt; SM: Silty Sand; SC: Clayey Sand

4.02.5 Site 22

Site 22 (Figure 7) is located at the Yountville Preserve along the left bank of the Napa River between Station 284+00 and 271+00. The downstream end of the site borders Yountville Cross Road. Near the center of Site 22 (at about Station 277+50), the Napa River is joined by Conn Creek which enters from the right (facing upstream). Between the two channels is a slightly elevated island covered with thick brush and trees. The channel is about 170 feet wide at its top at Station 275+00. The left bank is topped by an artificial berm about 4 feet high. Slope inclinations are on the order of 2.5:1 (horizontal to vertical) at Station 275+00. The river bank becomes near vertical upstream where large overhanging trees have protected the softer sediments below. The channel can be characterized as being broad and relatively shallow upstream of Conn Creek and becoming confined, narrow and relatively deep (greater than 5 feet) downstream of Conn Creek. The thalweg is about 18 feet below the elevation of the adjacent Preserve.

We drilled four borings at Site 22 (B-22-1 through B-22-4). Two borings (B-22-3 and B-22-4) were drilled at the base of the berm, and two borings (B-22-1 and B-22-2) were drilled on the opposite side of the site. In general, the borings encountered layered deposits of medium dense to dense sands and gravels with varying amounts of silt and clay and stiff, lean to fat clays which extended to the bottom of the borings (between 16.5 and 21.5 feet). Groundwater was encountered in Borings B-22-1 and B-22-2 at depths of 20.1 feet and 13.0 feet, respectively. Groundwater was not observed in Borings B-22-3 and B-22-4.

Hardpan deposits were encountered in all four borings at Site 22. Figure 7 shows locations of extensive hardpan deposits forming a broad terrace mapped within the vicinity of the site. The top of the hardpan deposits coincides with the approximate low water level of the channel. Figure 11 shows a geologic cross section through Site 22 and the river channel (at about Station 277+50). The cross section identifies the interpreted hardpan deposits and channel geometry. A summary of the hardpan deposits encountered in each boring is summarized in the table below (BOH = Bottom of Hole):

	Site 22								
Depth	B-22-1	B-22-2	B-22-3	B-22-4					
0									
1									
2	CH	CL							
3	CH	CL							
4	CH	CL							
5	СН	CL							
6	SC	CL	CL	CL					
7	SC	CL	CL	CL					
8	SC	CL		CL					
9	SC	CL		CL					
10	SC								
11	SC								
12	SC								
13	SC	CL	CH						
14	SC	CL	CH						
15		CL	CH						
16		CL	CH	1					
17		CL	BOH	BOH					
18		CL	at 16.5'	at 16.5'					
19									
20	CH								
21	CH								
22	BOH	BOH	10.						
	at 21.5'	at 21.5'							

CL Hardpan Deposit, Soil Classification Identified

CL: Lean Clay; CH: Fat Clay; ML: Silt; SM: Silty Sand; SC: Clayey Sand

4.02.6 Site 19

Site 19 (Figure 8) is located upstream of Site 22 on the right bank of Conn Creek, a sub-parallel tributary to the east of the Napa River, in the California Department of Fish & Wildlife Napa River Ecological Reserve. Site 19 is undeveloped and is generally covered with tall grasses, thick bushes and few trees. No topographic surveying was conducted at Site 19; therefore there is no stationing along this stretch of Conn Creek. The site is along a broad outside meander bend of the creek. The channel bottom was relatively dry at the time of our investigation with a few isolated pools of water. The thalweg ranges from 19 to 15 feet below the adjacent floodplain and the banks are generally 1:1 (horizontal to vertical).

We drilled two borings at Site 19 (B-19-1 and B-19-2). Both borings were drilled about 200 feet away from Conn Creek and were converted into standpipe piezometers. In general, the borings at Site 19 encountered medium dense to very dense sands and gravels with varying amounts of silt and clay which extended to the bottom of the borings (between 17.8 and 18.0 feet). Groundwater was not encountered in either boring during drilling. To our knowledge, groundwater measurements have not been made in the piezometers since installation.

Hardpan deposits were encountered in both borings at Site 19. Figure 8 shows locations of the hardpan deposits mapped within the vicinity of the site and can be correlated to the hardpan deposits identified in the borings. The hardpan deposits exposed in the channel appear to be partially covered by a relatively thin veneer of recent loose gravel and cobbles and may be more expansive than shown on our maps. A summary of the hardpan deposits encountered in each boring is summarized in the table below (BOH = Bottom of Hole):

CL: Lean Clay; CH: Fat Clay; ML: Silt; SM: Silty Sand; SC: Clayey Sand

4.02.7 Sites 14, 15, 16, 17 and 18

Sites 14 through 18 (Figure 9) are located immediately south of Yountville Cross Road between Stations 270+00 and 239+00. Along these contiguous sites, the main channel of the Napa River is relatively narrow and incised with steep banks and deep water pools (greater than 5 feet). Site 18 is located along the left bank of the Napa River with steep slopes, near vertical in areas. There is an existing rip-rap berm at the top of the bank which runs along the entire length of Site 18. Sites 14 through 17 are located across the river along the right bank (east side). There is a secondary channel which runs along the back (northeast) side of Site 17 and meanders across Site 17 to join the main channel at Station 255+00.

As shown on Figure 9, a total of 17 borings were drilled at Sites 14 through 18. We drilled eight borings at Site 18 (B-18-1 through B-18-8); four at the base of the existing berm and three approximately 75 feet back (west) from the existing berm in an area where a new berm is planned. Seven borings were drilled at Site 17 (B-17-1 through B-17-7), three borings along the right bank of the main channel and three along the secondary channel to the northeast of the main channel. Two borings were drilled at Site 14 (B-14-1 and B-14-2) at the base of the detention pond side slopes.

In general, the borings at Sites 14, 17 and 18 encountered layered deposits of medium dense to very dense sands and gravels with varying amounts of silt and clay and stiff to hard, lean to fat clays which extended to the bottoms of the borings (between 10.0 and 26.5 feet). Groundwater was observed in some of the borings at Site 17 between 16.2 and 26.0 feet below the ground surface. Groundwater was observed in some of the borings at Site 18 between 17.1 and 19.2 feet below the ground surface. Groundwater was observed in Boring B-14-2 at depth of 2 feet below the ground surface and was not observed in Boring B-14-1. The elevated groundwater level in Boring B-14-2 was likely related to the adjacent detention pond that is topographically higher than the boring location.

Hardpan deposits were encountered in all of the borings at Sites 14, 17 and 18 except for B-18-4, B-18-5 and B-18-6. Figure 9 shows locations of the hardpan deposits mapped within the vicinity of the sites. Generally, exposures of the hardpan deposits along the main channel were few and scattered. No hardpan deposits were observed along the secondary channel to the northeast of the main channel except where it flows into the main channel near Station 255+00. Figure 12 shows a geologic cross section through Sites 17 and 18 at Station 259+97.0. The cross section identifies the interpreted hardpan deposits and channel geometry.

A summary of the hardpan deposits encountered in each boring is summarized in the table below (BOH = Bottom of Hole):

	Site 18								Site 17						Site 14		
Depth	B-18-1	B-18-2	B-18-3	B-18-4	B-18-5	B-18-6	B-18-7	B-18-8	B-17-1	B-17-2	B-17-3	B-17-4	B-17-5	B-17-6	B-17-7	B-14-1	B-14-2
0																	
1																	
2							CL										
3							CL										
4							CL			SC							
5		CL					CL			SC							
6		CL					CL	ML		SC		CL					CL
7		CL					CL	ML		SC		CL					CL
8		CL					CL	ML	CL	SC		CL					CL
9		CL					CL	ML	CL	SC		CL					SC
10						BOH		ML	CL	SC		CL	SC				SC
11						at 10'		ML	CL	SC		CH	SC				SC
12					BOH		BOH	BOH	CL	SC		СН	SC				SC
13					at 11.5'		at 11.5	at 11.5'	CL	SC		СН	SC				ML
14	CL								CL			SC			-	CL	ML
15	CL											SC				CL	ML
16	СН															CL	ML
17	СН								BOH							BOH	BOH
18	СН		-						at 16.5'	5					CL	at 16.5	at 16.5
19	CH		-		-						s	SM			CL		
20	CH				-							SM			CL	1	
21	СН				-					-		SM		CL	CL		
22	CH	-	0.14		-						-			CL	CL	1	
23	СН	CL	SIVI		4						CL	011	CL	CL	CL	6	
24	СН	CL	SIVI		-						CL	СН	CL	CL	CL	61	
25	CH	CL	SM		-					BOU	CL	CH	CL	CL	CL		
26				DOLL	l.					BOH		CH					
	BOH	BOH	BOH	BOH						at 26'	BOH	BOH	BOH	BOH	BOH		
	at 26.5	at 26.5'	at 26.5	at 26.5							at 26.5'	at 26.5	at 26.5	at 26.5'	at 26.5'		

CL Hardpan Deposit, Soil Classification Identified

CL: Lean Clay; CH: Fat Clay; ML: Silt; SM: Silty Sand; SC: Clayey Sand

4.03 Phase 2 Project Reach Site Conditions

Geologic mapping was only performed at selected sites due to the budgeted time allowance. The following sites were mapped: Sites 13, 9, 8, 3, 2 and 1 (Figures 13 through 21). Extensive hardpan deposits were mapped along the channel and river banks at Sites 13, 9, 8, 3, 2 and 1.

We drilled 15 borings on the Phase 2 Sites. The approximate locations of our borings are shown on the Phase 2 Overview Map, Figure 2; logs of the borings are presented in Appendix A. A summary of the borings (depths and hardpan deposits encountered) is included in the table below (BOH = Bottom of Hole):

SC Hardpan Deposit, Soil Classification Identified

CL: Lean Clay; CH: Fat Clay; ML: Silt; SM: Silty Sand; SC: Clayey Sand

Groundwater was encountered in all but four borings during drilling between depths of 11.3 and 21.0 feet below the ground surface.

4.04 Groundwater

At the time of drilling, we measured groundwater levels in the borings (where encountered); these groundwater depth measurements are shown on the boring logs, cross sections (Figures 10 through 12) and is discussed in the sections above. Measurements made in borings that were backfilled with grout shortly after drilling may not be representative of equilibrium groundwater conditions. Groundwater was not noted to be observed in multiple borings, but this does not guarantee that there is no presence

groundwater at this location at the time. If the soils at depth are fine grained and not enough time was allowed to bring the groundwater to its equilibrium levels, then the elevation of measured groundwater will be noted as lower than what the true condition is.

5.00 EVALUATIONS AND CONCLUSIONS – PHASE 1 PROJECT REACH

5.01 General

We understand that it is an objective of the project to restore the creek channel to a more natural condition. In general, our investigation did not encounter conditions that would preclude accomplishing this basic objective. The fine- and coarse-grained soils encountered in the borings are typically capable of standing at the proposed cut slope inclination of 3:1 (horizontal to vertical) under normal conditions. Site specific evaluations and recommendations for planned cut slopes steeper than 3:1 are addressed in Appendix E, Site Specific Evaluations and Recommendations. Cut slopes should be planted or otherwise protected to resist erosion. More aggressive erosion control measures are warranted in coarse-grained soils and fine-grained soils of low plasticity due to erodability concerns.

As with most river channels, it is possible that slope failures could occur at some locations due to flood conditions. However, we anticipate that such static (i.e. non-earthquake) failures would typically be localized and limited in both depth and lateral extent. Broader and more extensive slope failures could occur due to earthquake-induced soil liquefaction in locations where continuous layers of liquefiable soils are saturated (i.e. below groundwater) at the time that a large earthquake occurs. However, soil liquefaction and related hazards, such as lateral spreading, would also be present if the river were entirely in a natural condition. In that the work required to mitigate liquefaction and related effects could be extensive and costly, it appears appropriate to exclude liquefaction mitigation from the scope of the planned river restoration project.

5.02 Hardpan Deposits

The hardpan deposits identified within the channel and encountered in our borings do not appear to adversely affect the geotechnical aspects of the project (e.g., grading, slope stability, berm configuration, etc.). We anticipate that these deposits can be excavated with conventional earth-moving equipment such as dozers, backhoes, and excavators. Note, however, that mitigation measures such as soil amendments and preparation related to revegetation and establishment of terrestrial habitats not included in our scope of work and would be provided by others, if necessary.

5.03 Slope Stability

We analyzed the static stability of proposed cut slopes using conventional slope stability analysis software (SLIDE, version 6.0 by Rocscience, Inc.); key inputs to the program include soil shear strength, soil unit weight and groundwater surface. Simplified analytical cross sections were developed to model planned 3:1 soil slopes using average strength parameters. The geotechnical input parameters we used for each soil layer are summarized on the result printouts included in Appendix C.

For each Site, we analyzed slope stability for two different water levels and two different slope inclinations. For the "low" groundwater case, we modeled a uniform (horizontal) water surface within the channel and slope coincident with the base of the slope. For the "high" groundwater case, we modeled a uniform (horizontal) water surface within the channel and slope coincident with the elevation at a depth of 5 feet below the top of slope. Both 2:1 and 3:1 (horizontal to vertical) slopes were analyzed.

For each analysis case, we calculated the slope's minimum static factor of safety (FS) against sliding. The FS is commonly defined as the sum of the forces resisting movement divided by the sum of the forces driving movement. A slope with a FS greater than unity (1.0) is theoretically stable. The results of our analyses are presented in Appendix C and summarized in the table on the following page.

Site #	Idealized Soil Profile	Slope Inclination (Horizontal to Vertical)	GW Level	Minimum FS
	Medium Dense Sand/Gravel	2.1	High	1.613
Sites: 29, 28,		2.1	Low	1.368
27, 26B, 22, 19	Madium Dansa Sand/Graval	3:1	High	1.952
	Wedidin Dense Sandy Graver	3:1	Low	1.916
	Loose Sand (Cravel	2:1	High	1.313
	Loose Sand/Graver	2:1	Low	1.151
Siles: 20C, 20A	Loose Sand (Cravel	3:1	High	1.661
	Loose Sand/Graver	3:1	Low	1.612
	0 to 5': Loose Sand	2:1	High	1.236
Sito 19	5' to 10': Stiff to Very Stiff Clay	2:1	Low	1.198
Sile 18	10' to 15': Dense Gravel	3:1	High	1.703
	15' to 20': Loose Sand	3:1	Low	1.694
		2:1	High	1.298
Site 17	0 to 6': Medium Dense Sand	2:1	Low	1.271
Sile 17	>14' Dense Gravel	3:1	High	1.803
		3:1	Low	1.781

Static Slope Stability Analysis Results FS = Factor of Safety (Minimum)

The results of our slope stability analyses generally show the proposed cut slopes to be stable under static (i.e. non-earthquake) conditions for both 2:1 and 3:1 slope inclinations. The FS against sliding for 2:1 slopes often fall below 1.5; therefore, we are recommending using a maximum slope inclination of 3:1 for the design of the project.

5.04 Seismic Hazard Potential

The subject site is located in the highly seismic San Francisco Bay Region, and it is certain that the completed project will be subjected to strong earthquake groundshaking at some point in the future. The site is not near a CGS-defined Alquist-Priolo Earthquake Fault Zone; consequently, the potential for surface fault rupture at the site is very low to negligible. The OVOK Reach of the Napa River features a creek channel incised into natural Late Pleistocene-age alluvium that can generally be characterized as variable. Strong earthquake groundshaking has the potential to cause localized failures within the creek banks through mechanisms involving liquefaction, lateral spreading, and/or landsliding. Potential hazards associated with these particular mechanisms are evaluated in the sections that follow.

5.05 Earthquake-Induced Soil Liquefaction

Liquefaction is a phenomenon whereby certain types of soils below groundwater lose strength in response to earthquake shaking. The soils considered most susceptible to liquefaction include loose, coarse-grained materials (i.e., sands and gravels); liquefaction susceptibility in these coarse-grained materials is most commonly correlated to "corrected" Standard Penetration Test (SPT) blow counts.

We evaluated liquefaction susceptibility and potential using the data from the site borings. In general, all of the loose to medium dense coarse-grained soils we encountered are considered susceptible to liquefaction *if they are below the groundwater table during a strong earthquake.* All of the clayey soils

encountered in the borings are sufficiently stiff to very stiff and/or plastic to exhibit earthquake-induced softening or liquefaction-type behavior.

Where soils susceptible to liquefaction are present, additional steps are needed to evaluate whether the ground shaking that occurs at the site during a large earthquake will initiate (trigger) liquefaction. We evaluated liquefaction triggering using the methodology outlined in Youd and Idriss, 2001. This method involves assessing the seismic demand on a soil layer, expressed in terms of the cyclic stress ratio (CSR), and comparing this value to the capacity of the soil to resist liquefaction, expressed in terms of the cyclic resistance ratio (CRR). The factor of safety (FS) against liquefaction is determined by dividing the CRR by the CSR. Soils having a FS less than or equal to 1.0 are considered liquefiable.

Levels of ground shaking used in our analyses were based on an earthquake moment magnitude (M_w) of 7.0 with a peak ground acceleration (PGA) of 0.42g. This PGA value was selected to be consistent with the probabilistically derived values (corresponding to a 10 percent chance of exceedence in 50 years level of hazard) obtained from the CGS Probabilistic Seismic Hazards Mapping Ground Motion Page (<u>http://redirect.conservation.ca.gov/cgs/rghm/pshamap/pshamap.asp</u>). An assumed design groundwater depth of 8 feet below the ground surface was used in our analyses.

The soil layers found to have a FS against liquefaction of less than or equal to one are summarized in the following table (BOH signifies "Bottom of Hole"):

Boring ID	Depth of Liquefiable Layer (feet below ground surface)	Elevation of Liquefiable layer (feet, AMSL)	USCS Soil Classification
B-17-1	15.0 - BOH @16.5	73.0 - 71.5	SC
B-17-2	20.5 - 25.0	75.5 - 71.0	SM
B-17-5	16.5 - 23.5	77.5 - 70.5	SM/GC
B-17-7	12.0 - 18.0	82.0 - 76.0	SM
B-18-2	15.0 - 20.0	78.0 - 73.0	SC
D 10 2	11.5 - 20.0	81.5 - 73.0	GC/SM
D-10-3	23.5 - BOH@26.5	69.5 - 66.5	SM
D 10 /	18.0 - 23.0	75.0 - 70.0	SM
D-10-4	23.0 - BOH@26.5	70.0 - 66.5	GP
B-18-8	8.0 - BOH@11.5	83.0 - 79.5	ML
B-19-2	8.0 - 10.0	92.0 - 90.0	SC
P 22 4	9.5 - 13.0	83.5 - 80.0	GC
D-22-4	13.0 - BOH@16.5	80.0 - 76.5	SC
P 26A 1	8.0 - 13.0	110.0 - 105.0	SM
D-20A-1	20.0 - 21.3	98.0 - 96.8	SM
B 26B 1	8.0 - 20.8	106.0 - 93.3	SP/SM
D-20D-1	20.8 - BOH@21.5	93.3 - 92.5	GP
	14.0 - 19.0	100.0 - 95.0	SW
B-26C-1	19.0 - 24.0	95.0 - 90.0	SP
	24.0 - BOH@26.5	90.0 - 87.5	GP
B-27-1	9.0 - 13.0	115.0 - 111.0	SM
D-21-1	13.0 - 20.0	111.0 - 104.0	GW
	8.0 - 15.0	117.0 - 110.0	SW-SM
B-28-1	15.0 - 20.0	110.0 - 105.0	SP-SC
	20.0 - BOH@21.5	105.0 - 103.5	SP

Potentially Liquefiable Soil Layers

The results of our liquefaction analyses are also included in Appendix D.

5.06 Lateral Spreading

Lateral spreading is a phenomenon where non-liquefied soil can move laterally on a weakened liquefied layer. Lateral spreading generally requires that liquefaction occur over a significant area, and that the non-liquefied soil above it be adjacent to a "free face" towards which movement can occur.

Sites 17, 18, 19, 22, 26A-C, 27 and 28 encountered medium dense sands and gravels that are potentially liquefiable, when submerged. If these materials are part of a continuous layer that daylights at the river bank and the layer liquefies, then there is a potential for the material above the liquefied layer to spread laterally. Unfortunately, we do not have enough information/data to confirm if this is the case.

The principal effects of lateral spreading could include cracking and slumping of creek banks that extend onto adjacent vineyard properties. Natural pre-existing hazards such as liquefaction and lateral spreading will not be mitigated as a part of the river restoration project. Individual landowners could elect to mitigate liquefaction and lateral spreading on their own if they consider these types of potential seismic hazards to be unacceptable.

5.07 Seismic Slope Stability

The results of our slope stability analyses (Section 5.03) produced minimum static factors of safety of 2.1 and 2.2 for the fine-grained soil case and it was noted that actual factors of safety for plausible landslide failure surfaces would necessarily be higher. Where soils having the potential for seismic strength loss are absent, these calculated factors of safety are considered sufficiently high to produce adequate seismic slope performance. This condition is interpreted to exist where fine-grained soils dominate and potentially liquefiable soils are not interpreted to be present (approximately Reach 9, Stations 11+00 to 27+00; and Reach 7, Stations 80+00 to 86+00). Where potentially liquefiable soils *are* present, seismic slope performance will be controlled by the liquefaction and lateral spreading mechanisms previously discussed.

5.08 Cut Slopes

In our slope stability analysis (Section 5.03; Appendix C), we calculated factors of safety against landsliding of 1.5 or greater for 3:1 slopes with non-earthquake conditions. These values indicates that the planned 3:1 slopes should generally be stable, statically (a factor of safety less than 1 would correspond to a slope that is not stable). This conclusion is generally valid under idealized conditions, but it should be anticipated that soil conditions along actual excavation cuts will vary and that severe or extreme flooding conditions may occur post-construction. These types of conditions, neither of which can explicitly be modeled, have the potential to produce slope instabilities requiring maintenance and/or repair.

In general, flatter cut slopes will be more stable and may be easier to vegetate and maintain. However, the planned cut slopes are considered acceptable provided that the designer and owner recognize and accept that shallow slope failures may occasionally occur and that periodic inspections, maintenance and repair of 3:1 cut slopes may be necessary.

5.09 Construction Considerations

We anticipate soil materials at the site can be excavated with conventional earth-moving equipment such as dozers, backhoes, and excavators; however, it is possible that rubble or buried obstructions could be encountered. All excavations deeper than 4 feet that will be entered by workers should be shored or sloped for safety in accordance with the California Occupational Safety and Health Administration (Cal-OSHA) standards. In general, the stability of site shoring and all temporary construction slopes as well as the protection of nearby site improvements during construction are responsibilities of the contractor.

It is possible that some site excavations could extend below groundwater, particularly if the work is performed during or shortly after the winter rainy season. Seepage zones or locally perched groundwater conditions could also be encountered. The control of groundwater during construction is the responsibility

of the contractor. Possible groundwater control methods include pumping from sumps at low points within excavations, horizontal drains and dewatering wells. The design, permitting, installation, monitoring, and abandonment of site dewatering and discharge systems are the contractor's responsibility. These responsibilities also include any special regulatory or health and safety requirements that may be associated with the disposal and/or discharge of construction water.

Although it is possible for construction to proceed during or immediately following the wet winter months, a number of geotechnical problems may occur which may increase costs and cause project delays. The water content of onsite soils may increase during the winter and rise significantly above optimum moisture content for compaction of subgrade or backfill materials. If this occurs, the contractor may be unable to achieve the specified levels of compaction. Dewatering requirements will potentially increase due to rainfall, surface runoff, seepage and rises in groundwater level. The stability of temporary slopes will decrease, potentially increasing the lateral extent of excavation required. If excavation trenches are open during winter rains, caving of the trench walls may occur. In general, we note that it has also been our experience that increased clean-up costs may be incurred, and greater safety hazards may exist, if the work proceeds during the wet winter months.

6.00 RECOMMENDATIONS

6.01 Berm Configuration

As shown in the detail below, new berms should include a core with a minimum crest width of 20 feet, a river-side slope inclination of 3:1 (horizontal to vertical) or flatter, and a land-side slope inclination of 2:1 or flatter. The land-side slope should have a plantable shoulder inclined at 8:1 or flatter. The toe of the new berm should be set back at least 12 feet from the adjacent river-side cut slope. Fill for the berm should conform to the requirements specified in Section 6.03, Earthwork.

6.02 Site Preparation

Prior to the start of work, the contractor should locate and mark all active subsurface utilities in the general vicinity of the site. The contractor should protect all utilities that are to remain in and surrounding the site (including existing piezometers) during onsite excavation and construction activities. Existing piezometers to be demolished or abandoned will need to done in a manner consistent with local regulations.

The site should then be cleared and grubbed of surface and subsurface deleterious matter including vegetation, aggregate road-base material, and abandoned utilities. These materials should be removed from the site or stockpiled for reuse if approved by the owner in consultation with our firm. Depressions resulting from the removal of underground obstructions (including tree stumps and root balls) that extend below the proposed finished grades should be cleared and the depressions backfilled with suitable material compacted to the requirements given in Section 6.03, Earthwork.

Special attention should be given to site preparation in areas where new berms are planned. Within berm areas, A3GEO should observe exposed conditions after vegetation and organic-laden soils are removed but prior to any fill placement to: 1) verify the adequacy of stripping; 2) check that suitable soils are exposed. Soils that are loose, weak, highly permeable or otherwise unsuitable should be overexcavated under A3GEO's direct observation and replaced with engineered material appropriate for berm construction.

6.03 Earthwork

6.03.1 Fill Materials

All proposed fill materials should be approved by A3GEO prior to use. The materials cleared or excavated from the site may be suitable for re-use as fill, from a geotechnical standpoint, if they meet or can be processed (i.e., by crushing and/or blending) to meet the requirements presented in this section. Material that cannot be mixed or processed to meet specification requirements should be disposed of offsite or stockpiled for other uses at the discretion of the owner. If the re-use of aggregate base or gravel is to be considered, it must first be approved by the owner in consultation with our firm.

General Fill – On-site native soil can be used as General Fill, provided it conforms to the requirements presented below:

- Has an organic content of less than 3 percent by volume,
- Does not contain rocks or lumps larger than 4 inches in greatest dimension, and
- Has no more than 15 percent of material larger than 2.5 inches.

General Fill can be used as engineered fill/backfill except where Berm Core Fill is required.

Berm Core Fill – In addition to the requirements for General Fill, Berm Core Fill should classify as Clay based on USCS criteria, have a Plasticity Index between 12 and 35 <u>and</u> have a Liquid Limit no greater than 55. If sands are mixed with clay to create Berm Core Fill, such mixtures should be blended and thoroughly mixed in a borrow area and be evaluated and approved by A3GEO prior to its importation to the site. Blending in a fill area is not acceptable.

Offsite fill material (if used) should comply with the requirements appropriate its intended use and be evaluated and approved by A3GEO prior to its importation to the site.

6.03.2 Subgrade Preparation

Subgrade surfaces in areas to receive fill should be firm, unyielding, and compacted to the requirements for engineered fill (refer to Section 6.03.3 below). Soft, yielding or otherwise unsuitable subgrade soils should be overexcavated to expose firm non-yielding materials and replaced with appropriately engineered fill. Additional requirements for the preparation of areas to receive fill are presented Section 6.02, Site Preparation.

Immediately prior to fill placement, exposed subgrade soils should be scarified to a depth of 6 inches or the full depth of any existing shrinkage cracks. The scarified subgrade soils should then be moisture conditioned to slightly above optimum water content and compacted to at least 90 percent relative compaction based on the ASTM D-1557 test method (latest version). A3GEO should observe and test, as appropriate, during subgrade preparation to check that surfaces to receive fill are properly prepared and verify that specified compaction and moisture conditioning requirements are achieved.

6.03.3 Engineered Fill Placement

All fill should be spread in lifts not exceeding 8 inches in uncompacted thickness on surfaces that are approximately level, moisture conditioned, as appropriate, and compacted by mechanical means to the required levels of compaction). It is possible that fill and/or subgrade soils may be excessively wet or dry depending on the moisture content at the time of construction. If the fill soils are too wet, they may be dried by aeration or by mixing with drier materials. If the fill soils are too dry, water will need to be added. Required levels of compaction should be as follows (all per ASTM D-1557, latest version):

Berm Core – at least 90 percent relative compaction Plantable Shoulder – at least 85 percent relative compaction Roadway Aggregate Base and/or Gravel – at least 95 percent relative compaction Other Fill Areas – at least 90 percent relative compaction

A3GEO should observe and test, as appropriate, during fill placement to verify that specified compaction and moisture conditioning requirements are achieved

The following additional requirements apply specifically to berm core construction. Berm Core Fill should be moisture conditioned to about 2 or 3 percent over optimum, as determined by ASTM D-1557 (latest version). Materials comprising the berm core should be approximately uniform and the placement adjacent dissimilar materials should be avoided. The berm core should be compacted in a systematic manner using a sheepsfoot kneading compactor or equivalent equipment. Material that fails the moisture or compaction criteria should be loosened by ripping or scarifying, moisture conditioned, and then recompacted.

6.04 Surface Drainage

Positive surface drainage should be provided to direct surface water away from slopes. Ponding or collection of surface water should be avoided in any areas adjacent to slopes. The river side of the berm should be designed to sheet flow to and beyond the berm toe. The crest of the berm should either be crowned to split the sheet flow runoff to both sides of the berm or the crown should be graded for sheet flow toward the vineyards. Grading plans should account for the swale that will be formed at the toe of the vineyard side of the slope and grade it to drain.

6.05 Maintenance

Annual inspection and maintenance should be performed late summer to early fall. The berm should be mowed prior to inspection to facilitate observation and repair. Trees or shrubs should not be allowed to grow on the berm and shrubs and saplings should be removed from the crest and river-side slope of the berm. Rodent activity should be monitored and population control initiated where rodent infestation is observed. Berm damage from tree or shrub removal, erosion, scour, rodent activity, etc. should be repaired to maintain the integrity of the berm.

6.06 Future Geotechnical Services

We recommend our firm be provided the opportunity for a general review of the geotechnical aspects of the final plans and specifications for this project in order verify that our geotechnical recommendations were properly interpreted and implemented. If our firm is not accorded the privilege of making the recommended review, we can assume no responsibility for misinterpretation of our recommendations.

The analyses and recommendations submitted in this report are based in part upon the data obtained from the soil borings. The nature and extent of variations across the site may not become evident until construction. If variations then become apparent, it will be necessary to re-examine the recommendations of this report.

A3GEO should review all submittals from the contractors that are geotechnical in nature, before geotechnical materials are delivered or equipment is mobilized to the site.

We recommend our firm be retained to provide geotechnical engineering services during the construction of the proposed project. This is to observe compliance with the design concepts, specifications, and recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated prior to the start of construction. During construction, A3GEO should observe the following:

- Soil conditions exposed by site excavations,
- Subgrade preparation, and
- Fill placement and compaction.

7.00 LIMITATIONS

This report has been prepared for the exclusive use of you and your consultants in accordance with generally accepted geotechnical engineering practices for specific application to the construction of the proposed Napa River OVOK Reach Restoration Project in Napa County, California. No other warranty, either expressed or implied, is made. In the event the nature, design, or location of the improvements differs significantly from what has been noted above, the conclusions and recommendations contained in this report should not be considered valid unless the changes are reviewed and the conclusions of this report are modified or verified in writing.

The findings of this report are valid as of the present date. However, the passing of time will likely change the conditions of the existing property due to natural processes or the works of man. In addition, due to legislation or the broadening of knowledge, changes in applicable or appropriate standards may occur. Accordingly, the findings of this report may be invalidated, wholly or partly, by changes beyond our control. Therefore, this report should not be relied upon after three years without being reviewed by this office.

If you have any questions concerning this report, please call us.

Very truly yours,

Dona K. Mann, G.E. Principal Engineer (415) 425-0247 Patrick Drumm, C.E.G. Project Geologist

Copies: Addressee (1 via email)

REFERENCES

Bezone, S.P., Clahan, K.B., Sowers, J.M., and Witter, R.C., 2005, Geologic Map of the Yountville 7.5' Quadrangle, Napa County, California: A Digital Database: California Geological Survey. <u>http://www.consrv.ca.gov/CGS/rghm/rgm/preliminary_geologic-maps.htm</u>

Bakun, W.H., 1999, "Seismic Activity of the San Francisco Bay Region," Bulletin of the Seismological Society of America, June 1999, V. 89, No. 3, p. 764-784.

Bryant, W.A., 1982, Fault Evaluation Report FER-129: California Geological Survey, 9 p., 8 figs.

Clahan, K.B., Wagner, D.L., Bezone, S.P., Sowers, J.M., and Witter, R.C., 2005, Geologic Map of the Rutherford 7.5' Quadrangle, Sonoma and Napa Counties, California: A Digital Database: California Geological Survey. <u>http://www.consrv.ca.gov/CGS/rghm/rgm/preliminary_geologic-maps.htm</u>

Clahan, K.B., Wagner, D.L., Saucedo, G.J., Randolp-Loar, C.E., and Sowers, J.M., 2004, Geologic Map of the Napa 7.5' Quadrangle, Napa County, California: A Digital Database: California Geological Survey. http://www.consrv.ca.gov/CGS/rghm/rgm/preliminary_geologic-maps.htm

California Geological Survey, 2008, Special Publication 117A, "Guidelines for Evaluating and Mitigating Seismic Hazards in California."

Ellen, S.D., and Wentworth, C.M., 1995, Hillside Materials and Slopes of the San Francisco Bay Region, California: U.S. Geological Survey Professional Paper 1357, 215 p., 7 pls.

Fox, K.F., Jr., 1983, Tectonic Setting of Late Mocene, Pliocene, and Pleistocene Rocks in Part of the Coast Ranges North of San Francisco, California: U.S. Geological Survey Professional Paper 1239, 33 p., 1 pl.

Fox, K.F., Jr., Sims, J.D., Bartow, J.A., and Helley, E.J., compilers, 1973, Preliminary Geologic Map of Eastern Sonoma County and Western Napa County, California: U.S. Geological Survey Miscellaneous Field Studies Map MF-483, map scale 1:62,500, 4 pls.

Graymer, R.W., Brabb, E.E., Jones, D.L., Barnes, J., Nicholson, R.S., and Stamski, R.E., 2007, Geologic Map and Map Database of Eastern Sonoma and Western Napa Counties, California: U.S. Geological Survey Scientific Investigations Map 2956, map scale 1:100,000.

Hart, E.W., and Bryant, W.A., 1997 (revised), Fault-Rupture Hazard Zones in California: California Geological Survey Special Publication 42, 38 p.

Helley, E.J., Lajoie, K.R., Spangle, W.E., and Blair, M.L., 1979, "Flatland Deposits of the San Francisco Bay Region, California - Their Geology and Engineering Properties, and Their Importance to Comprehensive Planning," U.S. Geological Survey, Professional Paper 943.

International Code Council, Inc., 2009, International Building Code (IBC), January 2009.

Jennings, Charles W., and Bryant, William A., 2010, "Fault Activity Map of California," California Geological Survey, Geologic Data Map No. 6.

Knudsen, Keith L., Sowers, Janet M., Witter, Robert C., Wentworth, Carl M., and Helley, Edward J., 2000, "Description of Quaternary Deposits and Liquefaction Susceptibility, Nine-County San Francisco Bay Region, California," U.S. Geological Survey, Part 3 of Open File Report 00-444.

Kunkel, F., and Upson, J.E., 1960, Geology and Ground Water in Napa and Sonoma Valleys, Napa and Sonoma Counties, California: U.S., Geological Survey Water-Supply Paper 1495, 252 p., 5 pls.

Luhdorff & Scalmanini Consulting Engineers and MBK Consulting Engineers, 2012 (Draft), Updated Hydrogeologic Conceptualization and Characterization of Conditions, Prepared for Napa County, dated December 2012, 125 p.

U.S. Geological Survey, 1951 (photoinspected 1973), 7.5-Minute Quadrangle Map Rutherford, California, map scale 1:24,000.

Wagner, D.L, and Bortugno, E.J., compilers, 1982, Geologic Map of the Santa Rosa Quadrangle: California Geological Survey Regional Geologic Map Series Map No. 2A, map scale 1:250,000.

Wagner, D.L., and Gutierrez, C.I., compilers, 2010, Geologic Map of Napa 30' x 60' Quadrangle, California: California Geological Survey.

Weaver, C.E., 1949, Geology and Mineral Deposits of an Area North of San Francisco Bay, California; Vacaville, Antioch, Mount Vaca, Carquinez, Mare Island, Sonoma, Santa Rosa, Petaluma, and Point Reyes Quadrangles: California Geological Survey Bulletin 19, 133 p., 4 figs., 24 pls.

Wesling, J.R., and Hanson, K.L., 2008, Final Technical Report, Mapping of the West Napa Fault Zone for Imput into the Northern California Quaternary Fault Database: U.S. Geological Survey and AMEC Geomatrix Consultants, Inc., USGS External Award Number 05HQAG002, 35 p., 13 figs, 1 appendix.

Working Group on California Earthquake Probabilities (WGCEP), 2003, "Earthquake Probabilities in the San Francisco Bay Region: 2002 to 2031 - A Summary of Findings," U.S. Geological Survey, Open File Report 03-214.

Working Group on California Earthquake Probabilities (WGCEP), 2008, "The Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2): for 2007-2036," U.S. Geological Survey Open File Report 2007-1437; CGS Special Report 203; and SCEC Contribution #1138.

Youd, T.L., and Idriss, I.M., 2001, "Liquefaction Resistance of Soils: Summary Report from the 1995 NCEER and 1998 NCEER/NSF Workshops on the Evaluation of Liquefaction Resistance for Soils," *in* ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 10, pp. 817-833, October 2001.

PLATES

A3GEO

Source: USGS topographic map 2012, Rutherford and Yountville Quadrangles, California, 7.5 Series

Plate 1 Vicinity Map Phase 1

NAPA RIVER RESTORATION OVOK REACH

A3GEO

Source: USGS topographic map 2012, Yountville and Napa Quadrangles, California, 7.5 Series

NAPA RIVER RESTORATION OVOK REACH

Plate 2 Vicinity Map Phase 2

EXPLANATION

Napa River Channel

~

Approximate Phase 1 Project Reach

Approximate Phase 2 Project Reach

NOT TO SCALE

NAPA RIVER RESTORATION OVOK REACH

Plate 3 Site Aerial Photograph

SOURCE:

http://www.quake.ca.gov/gmaps/FAM/ faultactivitymap.html (Jennings & Bryant,2010)

NAPA RIVER RESTORATION OVOK REACH

Plate 4 CGS Fault Activity Map

SOURCE: Clahan and others, 2005 (Rutherford 7.5' Quadrangle); Bezore and others, 2005 (Yountville 7.5' Quadrangle)

0

NAPA RIVER RESTORATION OVOK REACH

Plate 5 CGS Geologic Map 2005

SOURCE: Bezore and others, 2005 (Yountville 7.5' Quadrangle); Clahan and others, 2004 (Napa 7.5' Quadrangle)

KJfs

KJgv

Jk

Jgb

sp

NAPA RIVER RESTORATION OVOK REACH

Plate 6 CGS Geologic Map 2005

CRETACEOUS

JURASSIC

SOURCE: California Geological Survey; Napa County; ESRI – Safety Hazard Napa County General Plan - 2009

LEGEND

EXPLANATION

Plate 7 Napa County Liquefaction Susceptibility Map

NAPA RIVER RESTORATION OVOK REACH

SOURCE: California Geological Survey; Napa County; ESRI – Safety Hazard Napa County General Plan - 2009

Legend

Major Streams

Flood Zones

100 year zone

500 year zone

- **City Boundaries**
 - Major Water Bodies

EXPLANATION

NAPA RIVER RESTORATION **OVOK REACH**

Plate 8 Napa County Flood Zones Map

SOURCE: California Geological Survey; Napa County; ESRI – Safety Hazard Napa County General Plan - 2009

NAPA RIVER RESTORATION OVOK REACH

Plate 9 Napa County Dam Inundation Map

FIGURES

A3GEO, Inc. PROJECT No.1110-3A NAPA RIVER RESTORATION OVOK REACH NAPA, CALIFORNIA

Ω

A3GEO

FIGURE 2

A3GEO, Inc. PROJECT No.1110-3A NAPA RIVER RESTORATION **OVOK REACH** NAPA, CALIFORNIA

A\1110-3A

DRAFT

A3GEO

A3GEO, Inc. PROJECT No. 1110-3A NAPA RIVER RESTORATION OVOK REACH NAPA, CALIFORNIA

A3GEO

LEGEND

FIGURE 10 SITE 27/29 - CROSS SECTION A-A'

LEGEND

Fine - Grained Pleistocene-Age Alluvial Deposits (Hardpan Deposits)

Depth of Measured Groundwater During Drilling

FIGURE 11 SITE 22 - CROSS SECTION B-B' DRAFT

60' 30'

Ó'

FIGURE 12 SITE 17/18 - CROSS SECTION C-C' DRAFT

Appendix A

Boring Logs

UNIFIED SOIL CLASS	IFICATION CHART		1	
MAJOR DIVISIONS		1	SYM	TYPICAL NAMES
COARSE	GRAVELS:	CLEAN	GW	Well graded gravels and gravel-sand mixtures, little or no fines
GRAINED	50% or more	GRAVELS	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines
more than 50%	retained on	GRAVELS	GM	Silty gravels and gravel-sand-silt mixtures
retained on	No. 4 sieve	FINES	GC	Clayey gravels and gravel-sand-clay mixtures
NO. 200 SIEVE	SANDS:	CLEAN	SW	Well graded sands and gravelly sand, little or no fines
	more than 50%	SANDS	SP	Poorly graded sands and gravelly sand, little or no fines
	passes through	SANDS	SM	Silty sands, sand-silt mixtures
	No. 4 sieve	FINES	SC	Clayey sands, sand-silt mixtures
FINE-GRAINED	SILTS AND CLAYS:		ML	Inorganic silts, very fine sands, rock flour, silty or clayey fine sands
SOILS:	Liquid Limit 50% or le	SS	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
No. 200 sieve			OL	Organic silts and organic silty clays of low plasticity
	SILTS AND CLAYS:		ΜΗ	Inorganic silts, micaceous or diatomaceous fine sands or silts, elastic clays
	Liquid Limit greater th	an 50%	СН	Inorganic clays of high plasticity, fat clays
			ОН	Organic clays of medium to high plasticity
HIGHLY	ORGANIC SOILS		PT	Peat, muck and other highly organic soils

BOUNDARY CLASSI	FICATION AND	GRAIN SIZE	S				
	SAND			GRAVEL		COPPLES	
SILTORCLAY	FINE	MEDIUM	COARSE	FINE	COARSE	COBBLES	BUULDENS
U.S. STANDARD SIEVE SIZES No	. 200 No	. 40 No.	10 No.	4 3/	/4"	3"	12"

KEY TO LO	GS
SAMPLE TYPE	DESCRIPTION
K	Modified California Sampler (3" O.D.): blowcount is equivalent SPT N value (converted by multiplying field blowcounts by 0.63)
	Standard Penetration Test (2" O.D.)
	Thin-walled tube using Pitcher Barrel
	Shelby Tube, pushed or used Osterberg Sampler
Su	Disturbed Sample
NOTE: RECOF	RDED BLOW COUNTS HAVE NOT BEEN ADJUSTED FOR HAMMER ENERGY

KEY TO EXPLORATORY BORING LOGS

	A	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				В	OR	ING	NUM	IBER B-1-1 PAGE 1 OF 1
	CLIE	NT _E	SA-PWA	PROJEC	T NAME	Napa Rive	er Res	toratic	on - O\	/OK Rea	ch
	PROJ		IUMBER 1110-3A	PROJEC	T LOCAT	Napa	i, Calif	ornia			
	DATE		TED _ 1/14/13 COMPLETED _ 1/14/13	GROUN	D ELEVA	TION <u>56 ft</u>			HOLE	SIZE _4	l.5 in
Ŀ	DRILI	LING C	CONTRACTOR Northstar Drilling, Inc.	GROUN	O WATER	LEVELS:					
1X.G	DRILI	LING N	IETHOD Solid Stem Auger	A	TIME OF	DRILLING					
SITE	LOGO	GED B	Y Patrick Drumm CHECKED BY KMA	A	END OF	DRILLING					
/OK -	NOTE	S		AF	TER DRI	LLING					
OGS\BORING_LOGS_O\	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
NGL	0		SANDY CLAY WITH GRAVEL (CL) - Dark brown, soft to fir	m,							
ER OVOK\BOR			moist. SANDY LEAN CLAY WITH GRAVEL (CL) - Mottled olive bi	own							
-3A NAPA RIVI			and dark brown, stiff, fine grained sand, medium plasticity fi slightly moist.	nes,	мс	10	1.0 > 4.5				
- ESA-PWA\1110			SANDY CLAY (CL) - Yellowish brown, hard, moist, (HARDF	PAN	<u> </u>						
1110	10										
3GEO PROJECTS	 		LEAN CLAY (CL) - Mottled yellowish brown and light brown dense, slightly moist. (HARDPAN DEPOSIT)	,	МС	35	> 4.5	-			
- 5/31/13 15:46 - A:V	<u>15</u> 		- at 16.0': Few fine sand.		мс	32	4.5	-			
TEMPLATE.GDT	 _ <u>20</u> 		LEAN CLAY WITH SAND (CL) - Mottled brown and dark br hard, stratified silt and silty fine sand layers. (HARDPAN DEPOSIT)	own,	мс	32	> 4.5	_			
FT ALIGNED - A3GEO DATA	Botto Note 1. Str 2. Mo 3. Gr 4. Ba 5. Sa 6. Gr	om of b s: ratifica odified ound e ockfillee mpler oundw	torehole at 21.5 feet. tion lines represent the approximate boundaries between mater California (MC) blowcounts were adjusted by multiplying field b elevation should be considered approximate. Elevations from De d with cement grout immediately upon completion of drilling. driving method - rope and cathead. rater not encountered.	ial types lowcoun oble Tho	and the t ts by a fac mas 2011	transitions r ctor 0.63. I survey dat	nay be ta.	e grad	ual.		

GEOTECH BH COLUMN TERM NOTE LEFT ALIGNED - A3G

1	1	3 (G = O A3GEO, Inc 1331 Seventh Street, Unit E Berkeley, CA 94710				В	OR	ING	NUN	ABER B-1-2 PAGE 1 OF 1	
СП	ENT	「_ <u>ES</u>	A-PWA PF	ROJEC	T NAME	Napa Rive	er Res	toratic	on - O\	/OK Rea	ch	
PR	OJE	CT N	UMBER <u>1110-3A</u> PF	ROJEC		TION Napa	a, Calit	fornia				
DA	TE S	STAR	TED <u>1/14/13</u> COMPLETED <u>1/14/13</u> Gi	ROUN	D ELEVA	TION _ 57 ft			HOLE		1.5 in	
	LLI	NG C	ONTRACTOR _Northstar Drilling, Inc GI	ROUN		R LEVELS:						
DR	LLI	NG M	ETHOD Solid Stem Auger	A		DRILLING	i					
≝ LO	GGE	ED BY Patrick Drumm CHECKED BY KMA			AT END OF DRILLING							
	TES	;		AFTER DRILLING								
DEPTH		GKAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES	
			SANDY CLAY (CL) - Dark brown, firm, slightly moist to moist; possibly Holocene age.									
≥ 			LEAN CLAY WITH SAND (CL) - Mottled gray and brown, hard	d,								
1110-3A NAP			- at 6.0': (HARDPAN DEPOSIT)		мс	38	> 4.5	_				
			- at 9.0': Dark brown.					_				
			CLAYEY SAND (SC) - Light grayish brown, very dense, fine grained sand, slightly moist. (HARDPAN DEPOSIT)		мс	32/5.0"	> 4.5	-				
0:52 - A:M3GE01			SANDY LEAN CLAY (CL) - Mottled olive brown with red, white and yellowish brown, very dense, medium to coarse grained s moist. (HARDPAN DEPOSIT)	e, and,	мс	32/2.5"	> 4.5	-				
			LEAN CLAY WITH SAND (CL) - Olive gray, very stiff, fine gra sand, moist. (HARDPAN DEPOSIT)	ined								
<u>120</u>							-					
	-				SPT	27						
EOTECH BH COLUMN TERM NOTE LEFT ALIGNED - A3GEU UAIL	ttom tes: Strai Mod Grou Back Sam Grou	n of bo tificat und e kfilled pler r undwa	orehole at 21.5 feet. ion lines represent the approximate boundaries between materia California (MC) blowcounts were adjusted by multiplying field blov levation should be considered approximate. Elevations from Dob I with cement grout immediately upon completion of drilling. driving method - rope and cathead. ater not encountered.	l types wcoun le Tho	and the t ts by a fa mas 2017	transitions r ctor 0.63. 1 survey da	may be	e grad	ual.			

	A	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				В	ORI	NG	NUM	PAGE 1 OF 1
	CLIEN	IT <u>ES</u>	SA-PWA	PROJEC	T NAME	Napa Rive	er Res	toratio	n - O\	/OK Rea	ch
	PROJ	ECT N	UMBER 1110-3A	PROJEC	T LOCAT	ION Napa	i, Calif	ornia			
	DATE	STAR	TED _1/14/13 COMPLETED _1/14/13	GROUNE		FION <u>56 ft</u>			HOLE	SIZE 4	.5 in
2	DRILL	ING C	ONTRACTOR Northstar Drilling, Inc.	GROUNE	WATER	LEVELS:					
פ אין	DRILL	ING M	ETHOD Solid Stem Auger	AT	TIME OF	DRILLING					
	LOGO	BED B	Patrick Drumm CHECKED BY KMA	▼ AT	END OF	DRILLING	21.0	0 ft / E	lev 35	.00 ft	
YON V	NOTE	s		AF	TER DRI	LLING					
<u>LUGS/BURING_LUGS_U</u>	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
IEMPLALE GUI - 0/31/13 12/40 - A MOGEO PROJECT 2/1110 - E2A-PWAVITTU-34 INFA KIVEN UVONDORING			 SANDY CLAY (CL) - Dark brown, soft to firm, moist. SILTY SAND (SM) - Dark brown, medium dense, fine to me grained sand, non-plastic fines, slightly moist to moist. - at 6.5': Wet. LEAN CLAY (CL) - Yellowish brown, very stiff, slightly mois (HARDPAN DEPOSIT) - at 11.0': Light yellowish brown, more silty, less plastic. - at 14.0': Dark gray, trace fine grained sand, moist. - at 15.0': Brown. SILTY SAND (SM) - Yellowish brown, loose, fine to medium grained sand, fines have no plasticity, some laminated light yellowish brown lenses, wet.	edium .t.	мс мс	10 29 20 11	> 4.5				
AIA	Botto	m of b	orehole at 21.5 feet			1	I		1		

Bottom of borehole at 21.5 feet. Notes: 1. Stratification lines represent the approximate boundaries between material types and the transitions may be gradual. 2. Modified California (MC) blowcounts were adjusted by multiplying field blowcounts by a factor 0.63. 3. Ground elevation should be considered approximate. Elevations from Doble Thomas 2011 survey data. 4. Backfilled with cement grout 10 min. after completion of drilling. 5. Sampler driving method - rope and cathead.

GEOTECH BH COLUMN TERM NOTE LEFT ALIGNED - A3GEO D/

Δ	3	A3GEO, Inc 1331 Seventh Street, Unit E				В	OR	NG	NUN	PAGE 1 OF 1	
		Berkeley, CA 94710	מי הכי	T NA845	Nana Dive	vr Poo	toratio			ch	
		FA-PWA				er Res	toratio	n - 0\	/OK Rea	ch	
	JECT N	OMDER 1110-3A F TED 1/14/13 COMDI ETED 1/14/13				i, Calli	oma		917E /	5 in	
								HOLE		.5 11	
		ETHOD Solid Stem Auger			DRILLING						
	GED B)										
	ES		AFTER DRILLING								
	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES	
	-	SANDY CLAY (CL) - Dark brown, soft, moist.									
		LEAN CLAY WITH SAND (CL) - Very dark grayish brown, st fine grained sand, slightly moist.	tiff,								
		- at 6.0': 0.1" diameter rootlet in sample.		мс	9	1.75	-				
		CLAYEY SAND (SC) - Reddish brown, dense to very dense to medium grained sand, slightly moist. (HARDPAN DEPOS	e, fine SIT)								
		- at 11.0': Brown.		МС	32/4"						
15 		LEAN CLAY (CL) - Yellow, stiff, moist. (HARDPAN DEPOS	IT)				-				
		LEAN CLAY WITH SAND (CL) - Yellowish brown, stiff, fine t medium grained sand, moist. (HARDPAN DEPOSIT)	to	мс	13	> 4.5	-				
20		SILTY SAND (SM) - Yellowish brown, loose, fine to medium grained sand, fines have no plasticity, wet.									
	-			мс	5						
EOLECH BH COLUMN IEKM NULE LEFT ALISNEU- ASSECUTIVITY	om of b es: tratifical lodified round e ackfillec ampler roundw	orehole at 21.5 feet. tion lines represent the approximate boundaries between materi California (MC) blowcounts were adjusted by multiplying field blo levation should be considered approximate. Elevations from Do d with cement grout 15 min. after completion. driving method - rope and cathead. ater measured 13 min. after completion at drilling.	al types owcoun ble Tho	and the t is by a fac mas 2011	transitions r ctor 0.63. I survey dat	nay be	e grad	ual.			

VAME LOCAT LEVAT VATER ME OF R DRIL NOMBEL MC	Napa Rive	a, Calif 	Elev 5	MOISTURE CONTENT (%)	/OK Rea SIZE ft (ROD)	4.5 in OTHER LAB TESTS / NOTES					
	TON Napa TION 68 ft 2 LEVELS: 3 DRILLING BTOM BTOM BTOM TON 68 ft 2 LEVELS: 3 DRILLING 13. (JON NON) 19	a, Calif 30 ft / Ngd L3200d 3.75	DRY UNIT WT.	MOISTURE CONTENT (%)	ROCK %	4.5 in OTHER LAB TESTS / NOTES					
SAMPLE TYPE ME OF MO OF BUNUMBER MC	TION <u>68 ft</u> ELEVELS: DRILLING <u>13.</u> BROM BROM BROM COUNTS COUNTS (N AVTUE) 19	 So ft / (tst) 3.75	DRY UNIT WT.	MOISTURE (%) 10.74	ROCK RECOVERY %	0THER LAB TESTS / NOTES					
VATER ME OF ND OF R DRIIL NNUMBEK MC	BRIOMALE AND ALL AND A	 BOCKET DEN. (tst) 3.75	DRY UNIT WT.	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES					
ME OF ND OF R DRIL NUMBER MC	BRILLING DRILLING 13. BLOM BLOM COUNTS COUNTS (N VALUE) 19	 30 ft / BOCKET DEN (181) (181) 3.75	DRY UNIT WT.	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES					
SAMPLE TYPE SAMPLE TYPE NUMBER WC	DRILLING 13. BROMNER BROMNER COUNTS (N VALUE) 19	Locket Pen. (tst) 3.75	DRY UNIT WT.	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES					
SAMPLE TYPE SAMPLE TYPE NUMBER DW	ADJUSTED BLOW COUNTS (N VALUE) 19	BOCKET PEN. (tst) 3.75	DRY UNIT WT. [pcf] Aa	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES					
SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tst)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES					
МС	19	3.75									
MC	19	3.75									
МС	19	3.75				1					
МС	10										
n											
SPT	32										
MC	54										
SPT	17										
	SPT MC SPT	SPT 32 MC 54 SPT 17 SPT 17 the transitions r y a factor 0.63. s 2011 survey dat	SPT 32 MC 54 SPT 17 SPT 17 the transitions may be y a factor 0.63. s 2011 survey data.	SPT 32 MC 54 SPT 17 SPT 17 the transitions may be grade y a factor 0.63. 2011 survey data.	SPT 32 MC 54 SPT 17 SPT 17 SPT 17 SPT 17 SPT 17 SPT 17 SPT 17 SPT 17 SPT 17	SPT 32 MC 54 MC 54 SPT 17					
	A	3	G = O A3GEO, Inc 1331 Seventh Street, Unit E Berkeley, CA 94710				B	ORI	NG	NUN	IBER B-5-1 PAGE 1 OF 1
--------------	--------------------------	--------------------------	---	--------------	-----------------------	---	----------------------	-----------------------	-------------------------	-----------------------------	----------------------------
	CLIEN	IT ES	SA-PWA	PROJEC	T NAME	Napa Rive	er Rest	toratio	n - OV	/OK Rea	ch
	PROJ	ECT N	UMBER _ 1110-3A	PROJEC	T LOCAT	ION Napa	, Calif	ornia			
	DATE	STAR	TED <u>1/15/13</u> COMPLETED <u>1/15/13</u>	GROUNI	D ELEVAT	TION _72 ft			HOLE	SIZE 4	.5 in
	DRILL	ING C	ONTRACTOR Northstar Drilling, Inc.	GROUNI	WATER	LEVELS:					
GPJ 0	DRILL	ING M	ETHOD Solid Stem Auger	AT	TIME OF	DRILLING					
	LOGO	BED B	Patrick Drumm CHECKED BY KMA	AT	END OF	DRILLING					
- YO	NOTE	s		arProduce Af	TER DRIL	LING 13.	40 ft /	Elev 5	58.60 f	t	
	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
			SANDY CLAY (CL) - Dark brown, soft, moist; possibly Holo age.	ocene							
			SANDY LEAN CLAY (CL) - Very dark grayish brown, stiff, f grained sand, dark orange seams pervasive (possible Iron- staining), moist; possibly Holocene age.	ine oxide							
11110-3A NAI					мс	11	2.5				
- ESA-PWA	 10										
			- at 10.0': Brown, trace fine roots.		SPT	11					
מפורט דואני			<u> </u> CLAYEY SAND (SC) - Light vellowish brown dense fine to								
N.29 - A.M	15		grained sand, low plasticity fines, some 1/2-inct thick fine subrounded gravel layers, slightly moist. (HARDPAN DEP	OSIT)	SPT	31					
1 - 0/3/13	Botto Notes 1. Str	m of b s: atificat	orehole at 16.5 feet.	rial types	and the t	ransitions n	nay be	e gradi	ual.		

Statilization lines represent the approximate boundaries between material types and the transitions may be gradual.
 Modified California (MC) blowcounts were adjusted by multiplying field blowcounts by a factor 0.63.
 Ground elevation should be considered approximate. Elevations from Google Earth and Doble Thomas 2011 survey data.
 Backfilled with cement grout 15 min. after completion of boring.
 Sampler driving method - rope and cathead.
 Groundwater measured 9 min. after drilling of boring.

	A	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710			В	OR	ING	NUN	ABER B-7-1 PAGE 1 OF 1
	CLIEN	NT <u>es</u>	SA-PWA PRO	JECT NAM	IE Napa Riv	ver Res	toratic	on - O\	/OK Rea	ach
	PROJ		UMBER 1110-3A PRO	JECT LOC	ATION Nap	ba, Cali	fornia			
	DATE	STAR	TED 12/3/12 COMPLETED 12/3/12 GRO		/ ATION 80	ft		HOLE		4.5 in
	DRILI	ING C	ONTRACTOR Northstar Drilling Inc. GRO							
GPJ			IETHOD Solid Stem Auger			G				
TE 7.						•	0 ft / F		20 ft	
- SI	NOTE	:e				<u> </u>				
0 NO	NOTE	.•				-		1		
LOGS/BORING_LOGS_	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NI IMBER		POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
0-3A NAPA RIVER OVOK/BORING	 <u>5</u>		LEAN CLAY WITH SAND (CL) - Dark gray and dark yellowish brown, very stiff, slightly moist.	м	C 19	> 4.5	111	16	-	LL: 41
\$\1110 - ESA-PWA\1110	 10		SANDY LEAN CLAY (CL) - Dark grayish brown, stiff, fine graine sand, slightly moist.	ed M	C 11	2 25	100	22	-	El: 22 Gravel: 0% Sand: 29% Silt: 26% Clay: 45%
A:VA3GEO PROJECTS	 15		Ţ			2.23		22	-	EL: 34 Pl: 17 Gravel: 0% Sand: 40% Silt: 27% Clay: 33%
E.GDT - 5/15/13 16:53 -			SILTY CLAY WITH SAND (CL-ML) - Olive brown, firm, fine grained sand, low plasticity fines, wet.	SF SF	PT 5	_				
EMPLAT	<u>20</u>		- at 19.5' : Mottled light brown and reddish brown, very stiff. CLAYEY SAND (SC) - Mottled light brown, medium dense, fine	to SF	РТ 18					
D - A3GEO DATA T	 25		POORLY GRADED GRAVEL WITH CLAY (GP-GC) - Dark brow loose, medium to coarse grained sand, subangular firm to coars gravel, wet.	vn, ;e						
ALIGNE				SF	РТ 8					
GEOTECH BH COLUMN TERM NOTE LEFT	Botto Notes 1. Str 2. Mc 3. Gr 4. Ba 5. Sa	om of b s: ratificat odified ound e cckfilleo impler	orehole at 26.5 feet. tion lines represent the approximate boundaries between material ty California (MC) blowcounts were adjusted by multiplying field blowc levation should be considered approximate. Elevations from Google d with cement grout immediately after completion. driving method - rope and cathead.	rpes and th ounts by a e Earth and	e transitions factor 0.63. I Doble Thor	may bo nas 201	e grad	ual. /ey da	ta.	

LIENT _E	SA-PWA P	ROJECT	NAME	Napa Rive	er Res	toratio	n - O\	/OK Rea	ch
PROJECT	NUMBER 1110-3A P	ROJECT		TION Napa	i, Calif	ornia			
DATE STA	RTED <u>1/22/13</u> COMPLETED <u>1/22/13</u> G	ROUNDE		TION _75 ft			HOLE	SIZE _4	l.5 in
RILLING	CONTRACTOR Northstar Drilling, Inc.		VATER	R LEVELS:					
RILLING	METHOD Solid Stem Auger	ΑΤ ΤΙ	ME OF	DRILLING					
OGGED E	Y Patrick Drumm CHECKED BY KMA	AT EI	ND OF	DRILLING					
		${ar \Psi}$ afte	R DRI	LLING <u>17</u> .	00 ft /	Elev 5	58.00 1	ft	
DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTE
5	SANDY CLAY (CL) - Very dark grayish brown, stiff, fine to co grained sand, moist.	oarse							
			МС	12	3.75				
10	- at 10.0': Olive brown, fine grained sand, medium plasticity. (HARDPAN DEPOSIT)		МС	8	1.5				
<u>15</u> -	SILTY SAND (SM) - Dark grayish brown, loose, fine grained micaceous, low plasticity fines, moist.	sand,	МС	6					
20	SANDY CLAY (CL) - Mottled brown and dark brown, very stil grained sand, moist. (HARDPAN DEPOSIT)	f, fine							
			МС	22	4				
25	SANDY LEAN CLAY WITH GRAVEL (CL) - Mottled dark bro with red and yellow, stiff, fine to coarse grained sand, fine gra moist.	wn avel,							
V////		- I X	SPT	8					

CLIEI PROJ	NT <u>es</u> Iect n	A-PWA P UMBER 1110-3A P	ROJEC1	NAME	Napa Rive	er Res a, Calif	toratio fornia	on - O\	/OK Rea	ch
DATE	STAR	TED 1/23/13 COMPLETED 1/23/13 G	ROUND	ELEVA	TION 76 ft			HOLE	SIZE 4	.5 in
DRILI	LING C	ONTRACTOR Northstar Drilling, Inc. G	ROUND	WATER	LEVELS:					
DRILI	LING M	ETHOD Solid Stem Auger	AT		DRILLING					
LOGO	GED BY	Patrick Drumm CHECKED BY KMA	▼ AT	END OF	DRILLING	16.5	0 ft / E	lev 59	9.50 ft	
NOTE	s		AF1	TER DRI	LLING					
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTE
		SANDY CLAY (CL) - Very dark grayish brown, soft, moist; Possibly Holocene age.								
-		SILTY SAND WITH CLAY (SM) - Dark grayish brown, loose, grained sand, moist; Possibly Holocene age.	fine	мс	8					
10		SANDY CLAY (CL) - Mottled gravish brown and dark brown, fine grained sand iron-oxide staining, moist. (HARDPAN DEPOSIT)	stiff,			0.05				
-		- at 11.0': 2-inch long rootlet.		МС	14	2.25				
		CLAYEY SAND (SC) - Mottled dark brown, loose, fine graine sand, low plasticity fines, iron-oxide staining, moist. (HARDP, DEPOSIT)	ed AN	мс	6					
20		SANDY CLAY (CL) - Mottled dark brown and reddish brown, stiff, fine to medium grained sand, moist. (HARDPAN DEPO	very SIT)	мс	16	2.25				
-				MC		3.25				
- 25	VIIA	- at 23.5. Infollied yellowish brown, firm, low plasticity, wet.								
20				мс	5	1.0	-			
-										
		- at 28.0': Olive brown, soft.		мс	4	0.5				
Botto	m of b	prehole at 29.5 feet								
Note	s:									

	A	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				B	ORI	NG	NUN	PAGE 1 OF 1
	CLIEN	IT _ES	A-PWAI	PROJEC	T NAME	Napa Rive	er Rest	toratio	n - OV	OK Rea	ch
	PROJ	ECT N	UMBER 1110-3A	PROJEC		ION Napa	, Calif	ornia			
	DATE	STAR	TED 1/23/13 COMPLETED 1/23/13	GROUNI	D ELEVAI	TION 76 ft			HOLE	SIZE _4	.5 in
2	DRILL	ING C	ONTRACTOR Northstar Drilling, Inc.	GROUNI	O WATER	LEVELS:					
5	DRILL	ING M	ETHOD Solid Stem Auger	AT	TIME OF	DRILLING					
- 0	LOGG	ED BY	Patrick Drumm CHECKED BY KMA	AT	END OF	DRILLING					
	NOTE	s		AF	TER DRI	_LING					
	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
אוואטמיאטאטאיא			SANDY LEAN CLAY (CL) - Very dark grayish brown, soft, n LEAN CLAY (CL) - Dark grayish brown, very stiff, trace fine moist.	noist. sand,							
					мс	17	3.75				
1110 - ESA-P			CLAY WITH SAND (CL) - Mottled grayish brown, stiff, fine g sand, moist. (HARDPAN DEPOSIT)	grained			0.05				
15:54 - A: M3GEU PRUJECIS	 15		- at 13.5': Yellowish brown, firm, iron-oxide staining.		MC	6	3.25 0.75				
CI/IC/C -	Botto	m of b	orehole at 16.5 feet.								

Stratification lines represent the approximate boundaries between material types and the transitions may be gradual.
 Modified California (MC) blowcounts were adjusted by multiplying field blowcounts by a factor 0.63.
 Ground elevation should be considered approximate. Elevations from Doble Thomas 2011 survey data.
 Backfilled with cement grout 15 min. after completion.
 Sampler driving method - rope and cathead.
 Groundwater not observed.

	A	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				B	OR	NG	NUN	ABER B-8-4 PAGE 1 OF 1
	CLIEI	NT <u>es</u>	A-PWA	PROJEC	T NAME	Napa Rive	er Res	toratio	n - O∖	/OK Rea	ach
	PRO.	IECT N	UMBER 1110-3A	PROJEC		Napa	i, Calif	ornia			
	DATE	STAR	TED _1/23/13 COMPLETED _1/23/13	GROUN	DELEVA	TION 75 ft			HOLE	SIZE _	4.5 in
ΓďΞ	DRIL		ONTRACTOR Northstar Drilling, Inc.	GROUN	WATER	LEVELS:					
TE 8.G		LING M	EIHOU Solid Stem Auger Zetrick Drumm CHECKED BY	AT AT							
JK - SI	NOTE	ES EI		AI		LLING					
_OVC									_	-	
LOGS/BORING_LOGS	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
SEOTECH BH COLUMN TERM NOTE LEFT ALIGNED - A3GEO DATA TEMPLATE.GDT - 5/3///3 15:54 - A'VA3GEO PROJECTS/1110 - ESA-PWA/1110-3A NAPA RIVER OVOKIBORING		om of bes: ratification	SANDY CLAY (CL) - Very dark gravish brown, stiff, moist at 10.0': Mottled brown. (HARDPAN DEPOSIT) SILTY SAND (SM) - Gravish brown, loose, fine grained sar moist to wet. orehole at 16.5 feet. ion lines represent the approximate boundaries between mate California (MC) blowcounts were adjusted by multiplying field thevation should be considered approximate. Elevations from D I with cement grout 15 min. after completion. driving method - rope and cathead. ater not observed.	nd, erial types blowcount boble Tho	MC MC spt sby a fac mas 2011	9 6 transitions r ctor 0.63. 1 survey dat	2.25 nay be	e gradi	ual.		No sample recovered

	٨	2	A3GEO, Inc.				B	ORI	NG	NUN	ABER B-9-1 PAGE 1 OF 1
	A	5	Berkeley, CA 94710								
	CLIEN	IT <u>ES</u>	A-PWA I	PROJEC	T NAME	Napa Rive	er Res	toratio	n - OV	/OK Rea	ich
	PROJ	ECT N	UMBER 1110-3A	PROJEC		ION Napa	i, Calif	ornia		0.75	
			TED 1/23/13 COMPLETED 1/23/13 0 ONTRACTOR Northestar Drilling Inc. 0			FION <u>80 ft</u>			HOLE	SIZE _4	ł.5 in
5	DRILL		ETHOD Solid Stem Auger			DRILLING					
	LOGG	ED BY	Patrick Drumm CHECKED BY KMA	AT	END OF	DRILLING					
5	NOTE	s			TER DRI	LLING _20.	00 ft /	Elev 6	60.00 f	t	
	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
	 		LEAN CLAY WITH SAND (CL) - Dark grayish brown, stiff, fo gravel, moist.	ew fine							
L ICAI LO-DI I IVAN L-HOJ -	 				мс	11	3.25				
	_ 10 _		SANDY LEAN CLAY (CL) -Mottled dark grav and vellowish	brown.							
- Mageo FROJECIA	 		stiff, fine grained sand, low plasticity, moist. (HARDPAN DEPOSIT)	,	МС	9	1.5				
4 - 77.61 ¢1/1¢/6 - 1/16/-			LEAN CLAY WITH SAND (CL) - Mottled dark gray and yello brown, stiff, fine grained sand, moist. (HARDPAN DEPOSIT - at 15.5': Thin rootlets in sample.	owish `)	мс	10	1.75	-			
Ľ	20		FAT CLAY (CH) - Brown, firm, trace fine sand, moist. (HAR	DPAN			4.05	-			
			DEPOSIT) CLAYEY SAND (SC) - Brown, loose, fine to medium grained wet. (HARDPAN DEPOSIT)	d sand,	MC	5	1.25	-			
	25		FAT CLAY (CH) - Dark olive brown, soft, wet. (HARDPAN DEPOSIT)					-			
					мс	4	.5				
			CLAYEY GRAVEL WITH SAND (GC) - Mottled dark olive by very stiff, rounded fine gravel, medium to coarse grained sa	rown, nd,	мс	24					
	Botto	m of b	prehole at 29.5 feet.	/							
	Notes 1. Str 2. Mc 3. Gr 4. Ba 5. Sa 6. Gr	a: atificat odified ound e ckfilled mpler oundwa	ion lines represent the approximate boundaries between mater California (MC) blowcounts were adjusted by multiplying field bl levation should be considered approximate. Elevations from Do with cement grout 20 min. after completion of drilling. driving method - rope and cathead. ater measure 13 min. after drilling.	ial types owcount ble Tho	and the t is by a fac mas 2011	transitions r ctor 0.63. I survey dat	nay be a.	e gradı	ual.		

1	13	G = O A3GEO, Inc 1331 Seventh Street, Unit E Barkelow, CA 94740				B	OR	ING	NUN	IBER B-9-2 PAGE 1 OF 1
CLI	ENT ES	A-PWA Berkeley, CA 94/10		AME	Napa Rive	er Rest	toratio	n - O\	/OK Rea	ich
PR		UMBER 1110-3A PR	ROJECT LO		TION Napa	a Calif	ornia			
	TE STAR	TED 1/23/13 COMPLETED 1/23/13 GR		FVA	TION 76 ft	.,	onna	HOI F	SIZE 4	1 5 in
		ONTRACTOR Northstar Drilling Inc						HOLL		
		IFTHOD Solid Stem Auger			DRILLING					
	GGED B					19.30) ft / F	lev 56	70 ft	
	TES									
ð N										
DEPTH	(II) GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPI E TVPE	NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
		SANDY CLAY (CL) - Dark grayish brown, stiff, fine grained sar moist; possibly Holocene age.	nd,							
1110-3A NAPA		- at 5.5': Trace fine rootlets.	H	MC	15	3.00				
		SANDY CLAY (CL) - Grayish brown stiff, fine grained sand, iron-oxide staining, moist. (HARDPAN DEPOSIT)								
NA3GEO PROJECTS/11		- at 10.5': Iron-oxide stained streaks.		MC	13	2.5				
E.GDT - 6/3/13 00:43 - A		CLAYEY SAND (SC) - Grayish brown, loose, fine grained sand little to no plasticity, iron-oxide staining, moist. (HARDPAN DEPOSIT)	d,	MC	6	-				
			H	МС	11					
3EOTECH BH COLUMN TERM NOTE LEFT ALIGNED - A3GEO DATA 2 7 8 0 0	ttom of b tes: Stratifica Modified Ground e Backfiller Sampler	orehole at 21.5 feet. tion lines represent the approximate boundaries between material California (MC) blowcounts were adjusted by multiplying field blow levation should be considered approximate. Elevations from Doble d with cement grout 20 min. after completion of drilling. driving method - rope and cathead.	types and vcounts by e Thomas	the the factor of the factor o	transitions r ctor 0.63. 1 survey da	nay be	e gradi	ual.		

A3	GEO A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				BC	RIN	IG I	NUM	BER B-10-1 PAGE 1 OF 1
LIENT ES	SA-PWA	PROJEC		<u>Napa Rive</u>	e <u>r Res</u> Calif	<u>toratio</u> fornia	<u>n - O</u> V	/OK Rea	ich
ATE STAR	TED 12/3/12 COMPLETED 12/3/12	GROUN	D ELEVA	TION <u>82 ft</u>	i, Ouii		HOLE		ł.5 in
RILLING C	ONTRACTOR Northstar Drilling, Inc.	GROUN	O WATER	LEVELS:					
	ETHOD Solid Stem Auger	AT	TIME OF	DRILLING					
OGGED BY	Patrick Drumm CHECKED BY KMA	- X A1			11.6	0 ft / E	lev 70	.40 ft	
GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
	CLAYEY SAND (SC) - Dark brown, stiff, fine to medium gr sand, low plasticity, moist; Possible Holocene age.	rained							
5					0.5	-			
-///	- at 5.5': Thin green rootlet in sample.			9	2.5	-			
	yellowish brown, loose, moist.								
	SILTY CLAY WITH SAND (CL-ML) - Olive brown, stiff, fine grained sand, low plasticity fines, moist. (HARDPAN DEPC	e OSIT)	мс	8	1.25	-			
15	LEAN CLAY WITH SAND (CL) - Olive brown stiff fine gra	ained			-				
	sand, wet. (HARDPAN DEPOSIT)		SPT	10					
<u>20 </u>	- at 20.0': Firm.								
			▲ SPT	6	-				
25									
	LEAN CLAY WITH SAND AND GRAVEL (CL) - Olive brow	vn, stiff,	SPT	9	-				
Bottom of b Notes: I. Stratificat 2. Modified 3. Ground e 4. Backfillec 5. Sampler	orehole at 26.5 feet. tion lines represent the approximate boundaries between mate California (MC) blowcounts were adjusted by multiplying field l levation should be considered approximate. Elevations from C I with cement grout upon completion of drilling. driving method - rope and cathead.	erial types blowcoun Google Ea	and the t ts by a fac rth and D	ransitions r ctor 0.63. oble Thoma	nay be as 201	e gradi 1 surv	ual. /ey dat	ta.	

	A	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				BC	RIN	IG I	NUM	BER B-13-1 PAGE 1 OF 1
	CLIEI	NT _ES	SA-PWA	PROJEC	CT NAME	Napa Rive	er Res	toratic	n - 0\	/OK Rea	ch
	PROJ	IECT N	UMBER _ 1110-3A	PROJE	CT LOCAT	Napa	i, Calit	fornia			
	DATE	STAR	TED _1/22/13 COMPLETED _1/22/13	GROUN	D ELEVA	TION <u>81 ft</u>			HOLE	SIZE _4	1.5 in
GP	DRIL		ONTRACTOR Northstar Drilling, Inc.	GROUN		R LEVELS:					
П 13.	DRIL		ETHOD Solid Stem Auger	A							
R - SI	NOTE	3ED B1				URILLING 12	 20 ft /	Flev (S8 80 1	1	
				÷A			20117				
	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
SINGL	0		CLAYEY SAND (SC) - Very dark grayish brown, medium d	lense,							
K/BOF			moist.								
0 No			FAT CLAY WITH SAND (CH) - Dark brown, soft, fine grain sand moist	ed							
RIVER											
APAF	5										
-3A N			- at 5.75': Gravish brown and dark vellowish brown, stiff.		МС	9	2.25				
A\1110											
SA-PW											
10 - E	10										
TS/11			LEAN CLAY WITH SAND (CL) - Mottled dark brown and b firm, fine grained sand, iron-oxide staining, moist. (HARDP	rown, 'AN	мс	7	2.5				
OJEC			Ţ DEPOSIT) Ţ								
O PR											
A3GE											
23 - A:	15		FAT CLAY WITH SAND (CH) - Mottled dark brown, stiff, w	et.	Мис	0	4 75	-			
3 15:						0	1.75	-			
5/31/1											
- LDE											
ATE.0	20										
EMPL			at 24 Ob Oraviah harver with dark vallewich harver mattlin	_	мс	8	1.25				
ATA 1			- at 2 1.0 . Grayish brown with dark yellowish brown mottling	J.				1			
EOD											
- A3G	 										
IGNED	2		- at 25.0': Firm.		мс	5	1.50	1			
TAL											

Bottom of borehole at 26.5 feet.

GEOTECH BH COLUMN TERM NOTE LEI Notes:

Notes:
 Stratification lines represent the approximate boundaries between material types and the transitions may be gradual.
 Modified California (MC) blowcounts were adjusted by multiplying field blowcounts by a factor 0.63.
 Ground elevation should be considered approximate. Elevations from Doble Thomas 2011 survey data.
 Backfilled with cement grout 15 min. after completion of drilling.
 Sampler driving method - rope and cathead.
 Groundwater observation 10 min. after completion of drilling.

	A	3	G = O A3GEO, Inc 1331 Seventh Street, Unit E Berkeley, CA 94710				BO	RIN	IG I	NUMI	BER B-14-1 PAGE 1 OF 1
	CLIE	NT <u>es</u>	A-PWA P	ROJEC	T NAME	Napa Rive	er Rest	toratio	n - 0\	/OK Rea	ich
	PROJ	JECT N	UMBER P	ROJEC	T LOCAT	ION Napa	i, Calif	ornia			
	DATE	STAR	TED _1/15/13 COMPLETED _1/15/13 G	ROUN	DELEVA	FION 99 ft			HOLE	SIZE 4	1.5 in
-	DRILI	LING C	ONTRACTOR Northstar Drilling, Inc. G	ROUN	O WATER	LEVELS:					
4.GP	DRILI	LING M	ETHOD Solid Stem Auger	A	TIME OF	DRILLING					
Щ Т Т	LOGO	GED B	Patrick Drumm CHECKED BY KMA	A	END OF	DRILLING					
K - S	NOTE	ES		AF	TER DRI	LLING					
OGS/BORING_LOGS_OVC	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
/13 00:56 - A:A3GEO PROJECTS/1110 - ESA-PWA\1110-3A NAPA RIVER OVOK\BORING LO	0 		SANDY CLAY (CL) - Mottled very dark grayish brown with re- yellow, soft, fine to coarse grained sand, moist. - at 3.0': hard, slightly moist. CLAYEY SAND WITH GRAVEL (SC) - Gray, dense, fine gra slightly moist. - at 8.5': Mottled brown, red brown and yellowish brown, med dense. SANDY CLAY (CL) - Yellowish brown and reddish brown, ha fine to coarse grained sand, slightly moist. (HARDPAN DEPC	vel, lium rd, DSIT)	MC SPT	31 26 39	>4.50				
GEOTECH BH COLUMN TERM NOTE LEFT ALIGNED - A3GEO DATA TEMPLATE.GDT - 6/3/	Botto Note 1. Std 3. Gr 4. Bo 5. Sa 6. Gr	orn of b s: ratificat odified round e oring ba ample c roundw	orehole at 16.5 feet. ion lines represent the approximate boundaries between materia California (MC) blowcounts were adjusted by multiplying field blo levation should be considered approximate. Elevations from Gou ackfilled with cement grout immediately upon completion. Iriving method - rope and cathead. ater was not encountered.	al types wcoun ogle Ea	and the t ts by a fac rth and D	ransitions r ctor 0.63. oble Thoma	nay be	e gradi	ual. /ey da	ta.	

A3	GEO A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710			BC	DRIN	IG I	NUM	BER B-14-2 PAGE 1 OF 1
			Nana Rive	or Ros	toratio	n - OV	/OK Rea	uch
					fornio	11-01		
PROJECT				i, Calli a	iomia			
DATE STAI	RTED COMPLETED GRO	JND ELEVA	TION <u>114</u>	ft		HOLE	SIZE _	1.5 in
	CONTRACTOR Northstar Drilling, Inc. GRO	JND WATEF	R LEVELS:					
	METHOD Solid Stem Auger	AT TIME O	F DRILLING					
	Y Patrick Drumm CHECKED BY KMA	AT END OF	DRILLING					
× NOTES	$\overline{\Lambda}$	AFTER DRI	LLING 2.0	0 ft / E	Elev 1	12.00 f	ft	
DEPTH DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
A IMPA RIVER OVOKIBORING	 SANDY CLAY (CL) - Very dark grayish brown with red and yellow soft, moist. SANDY CLAY WITH GRAVEL (CL) - Mottled very dark grayish brown with red, stiff, fine gravel, fine to coarse grained sand, slightly moist. 	/, 	9	2 75	_			
	SANDY CLAY (CL) Prown stiff fing grained cand low plasticity		9	2.75				
	fines, moist. (HARDPAN DEPOSIT) CLAYEY SAND (SC) - Brown, dense to very dense, fine to medium grained sand, few fine gravel, slightly moist. (HARDPAN DEPOSIT) SANDY SILT (ML) - Yellowish brown, very stiff, fine grained sand little clay, moist. (HARDPAN DEPOSIT)	,	41					
12:24		МС	20	3.75				
EVIEWDITERM NOTE LEFT ALIGNED - A3GEO DATA TEMPLATE GDT - 6011 -	borehole at 16.5 feet. ation lines represent the approximate boundaries between material ty I California (MC) blowcounts were adjusted by multiplying field blowco elevation should be considered approximate. Elevations from Google ackfilled with cement grout 15 minutes after competion. driving method - rope and cathead. water elevation was observed 10 minutes after completion of hole.	bes and the unts by a fa Earth and E	transitions r ctor 0.63. Doble Thoma	nay be	e gradi I 1 surv	ual. /ey da	ta.	

	A	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				BO	RIN	IG I	NUMI	BER B-17-1 PAGE 1 OF 1
	CLIEI	NT <u>ES</u>	A-PWA	PROJE		Napa Rive	er Res	toratio	n - O\	/OK Rea	ch
	PRO	JECT N	UMBER <u>1110-3A</u>	PROJE	CT LOCAT	ION Napa	i, Calif	ornia			
	DATE	E STAR	TED11/7/12 COMPLETED11/7/12	GROUN		FION <u>88 ft</u>			HOLE	SIZE _4	l.5 in
(.GPJ	DRIL		ONTRACTOR Northstar Drilling, Inc.	GROUN	ID WATER	LEVELS:					
17	DRIL	LING M	ETHOD Solid Stem Auger	⊥¥ A	T TIME OF	DRILLING	16.2	:0 ft / E	Elev 7	1.80 ft	
- SITI	LOGO	GED BY	Pat Drumm CHECKED BY KMA	Α	T END OF	DRILLING					
¥0×	NOTE	ES		A	FTER DRI	LLING					
LOGS/BORING_LOGS_C	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
A RIVER OVOK/BORING	 		WELL-GRADED GRAVEL (GW) - Mottled gray, medium d dense, includes cobbles from vineyard road, slightly moist.	ense to							
10-3A NAP/	<u> </u>		CLAYEY SAND (SC) - Yellowish brown, medium dense, fir grained sand, slightly moist; iron-oxide staining. (HARDPA DEPOSIT)	ne N	мс	33					
0 - ESA-PWA\11	 		LEAN CLAY (CL) - Yellowish brown, stiff, slightly silty and slightly moist to moist. (HARDPAN DEPOSIT)	sandy,	_						
O PROJECTS/111	 				мс	13	> 4.5				
3 16:03 - A:\A3GE			CLAYEY SAND (SC) - Gray, medium dense, medium to co $\sqrt{2}$ grained sand, trace fines, and trace fine gravel, wet.	barse	мс	21					
3EOTECH BH COLUMN TERM NOTE LEFT ALIGNED - A3GEO DATA TEMPLATE.GDT - 5/31/1;	Bottc Note 1. St 2. Mo 3. Gr 4. Ba 5. Sa	om of bo s: ratificat odified (ound e ackfilled ample d	orehole at 16.5 feet. ion lines represent the approximate boundaries between mate California (MC) blowcounts were adjusted by multiplying field b levation should be considered approximate. Elevations from D with cement grout immediately upon completion. I with cement grout immediately upon completion. Iriving method - rope and cathead.	rial type blowcour oble Th	s and the t hts by a fac omas 2011	transitions r ctor 0.63. I survey dat	nay be	e gradi	ual.		

1	Ą	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				BC	RIN	IG I	NUMI	BER B-17-2 PAGE 1 OF 1
c	LIEN	T _ES	SA-PWAF	PROJEC		Napa Rive	er Res	<u>torati</u> o	<u>n - O</u> \	/OK Rea	ch
PI	ROJI	ECT N	UMBER 1110-3A F	PROJEC		ION Napa	, Calif	ornia			
	ATE	STAR	TED 11/7/12 COMPLETED 11/7/12 C	GROUND	ELEVA	TION 96 ft			HOLF	SIZE 4	.5 in
ים ה ים ה	RILL		ONTRACTOR Northstar Drilling Inc	GROUND							
				лт \\			ეე ⊑	50 ft / 1		3 50 ft	
							22.0	0 ft / F		90 ff	
	000	יבים ש פ					Z		.iev / 2		
		<u> </u>									
DEPTH	(#)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
10 - ESA-PWA11110-3A NAPA KIVEK UVUNIBURING			SILTY SAND (SM) - Dark brown, medium dense, fine graine sand, slightly moist. CLAYEY SAND (SC) - Dark brown with some orange and bl mottling, medium dense, fine grained sand, slightly moist; fir consist of high plasticity sandy clay and low plasticity silty sa (HARDPAN DEPOSIT)	ack nes and.	мс	17					
					мс	23					
	1 <u>5</u> - - - 20		WELL-GRADED GRAVEL (GW) - Light brownish gray, very dense, subrounded up to 2.0", slightly moist.		MC	32/2"					
	- - - 25		SILTY SAND (SM) - Dark brown, loose, fine grained sand, s fine gravel, fines have no pasticity, moist. ∑ ▼	some	SPT	8					
UC NE	-		WELL GRADED GRAVEL (GW) - Mottled Brown, very dens	ie,	МС	32/6"					
SEOTECH BH COLUMN TERM NOTE LEFT AL	ottoi lotes . Stri . Mo . Gro . Bao	m of b atificat dified bund e ckfillec mple c	orehole at 26.0 feet. tion lines represent the approximate boundaries between materi California (MC) blowcounts were adjusted by multiplying field blo levation should be considered approximate. Elevations from Do d with cement grout immediately upon completion. Iriving method - rope and cathead.	ial types owcount: bble Thor	and the t s by a fa nas 2011	transitions r ctor 0.63. I survey dat	nay be	e grad	ual.		

Α	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				BO	RIP	NG	NUM	PAGE 1 OF 1
CLIE	NT <u>es</u>	A-PWA P	ROJECT N	AME	Napa Rive	er Res	toratic	on - O	VOK Rea	ch
PRO.		UMBER 1110-3A P	ROJECT LO	CAT	FION Napa	i, Calif	ornia			
DATE	E STAR	TED <u>11/7/12</u> COMPLETED <u>11/7/12</u> G	ROUND EL	EVA	TION _94 ft			HOLE		1.5 in
	LING C	ONTRACTOR Northstar Drilling, Inc. G			R LEVELS:					
	LING M	ETHOD Solid Stem Auger		IE OF	F DRILLING					
	GED BY									
	ES		AFTER	DRI	LLING					
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPI E TVPE	NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
		SILTY SAND (SM) - Dark brown, dense, fine grained sand, slightly moist; possibly Holocene age.								
	- <u> </u>	SANDY SILT (ML) - Dark brown with black and orange mottlin stiff, slightly moist; possibly Holocene age. - at 5.5': Many thin roots	ng,	MC	13					
) - · · - 10		SANDY LEAN CLAY (CL) - Dark brown to gray, very stiff, slig moist; possibly Holocene age.	ghtly			-				
		- at 11.0': Many hair-like fibers		мс	20					
		CLAYEY GRAVEL WITH SAND (GC) - Mottled gray and brow medium dense, coarse subrounded gravel, slightly moist.	wn,	МС	33					
20		SANDY LEAN CLAY (CL) - Dark brown, hard, coarse grained sand, few fine gravel, moist.	, The second sec	MC	32/5"					
		CLAYEY GRAVEL WITH SAND (GC) - Mottled gray and brow very dense, moist.	wn,							
25		LEAN CLAY WITH SAND (CL) - Greenish brown, hard, some gravel, moist. (HARDPAN DEPOSIT)	e fine							
			H	MC	42					
Botto Note 1. St 2. Mi 3. Gi 4. Ba 5. Sa 6. Gi	om of bo s: ratificati odified (round el ackfilled ample d roundwa	brehole at 26.5 feet. ion lines represent the approximate boundaries between materia California (MC) blowcounts were adjusted by multiplying field blo levation should be considered approximate. Elevations from Dob with cement grout immediately upon completion. riving method - rope and cathead. ater was not encountered.	al types and wcounts by ole Thomas	the a fa 201	transitions r ctor 0.63. 1 survey da	nay be	e grad	ual.		

Date Start EU 11//12 COMPLETED 11//12 GROUND ELEVATION 94 H HOLE SIZE 4.5 in DRILLING CONTRACTOR Northstar Drilling, Inc. GROUND WATER LEVELS: AT TIME OF DRILLING	CLIEN PROJ	NT <u>ES</u>	A-PWA PF UMBER 1110-3A PF	ROJECT ROJECT	NAME LOCAT	Napa Rive	e <u>r Rest</u> I, Calif	toratio ornia	<u>n - O\</u>	/OK Rea	<u>ich</u>
ArcLinko du Hrub Joulin Holger CADE V Pat Drumm NOTES NOTES NOTES NOTES NOTES NOTES NOTES NATERIAL DESCRIPTION AT END O FOILLING AT END O FOILLING AT END O FOILLING AT END OF POILLING AT END OF POIL AT AT END OF POI	DATE	STAR	TED 11/7/12 GF ONTRACTOR Northstar Drilling, Inc. GF ETHOR Solid Stom Augor	ROUND E ROUND V	ELEVAT VATER	LEVELS:			HOLE	SIZE _4	<u>1.5 in</u>
H = 0 W = 0 MATERIAL DESCRIPTION W = 0		EING M ED BY	<u>Pat Drumm</u> CHECKED BY <u>KMA</u>	AT E	ND OF	DRILLING LLING					
SILTY SAND (SM) - Dark brown, medium dense, fine grained sand, slightly moist; possibly Holocene age. MC 15 > 4.5 SANDY CLAY (CL) - Brown with some mottled orange and black, very stiff, fine grained sand, slightly moist. (HARDPAN DEPOSIT) MC 15 > 4.5 101 20 FAT CLAY (CH) - Dark brown, hard, few fine grained sand, slightly moist. (HARDPAN DEPOSIT) MC 39 > 4.5 101 20 Intersection CLAYEY SAND (SC) - Olive brown, medium dense, few gravels, little slit, fine to medium grained sand, slightly moist. (HARDPAN DEPOSIT) MC 28 100 23 Intersection SILTY SAND (SM) - Mottled dark yellowish brown, very dense, fine grained sand, slightly moist. (HARDPAN DEPOSIT) MC 56/11" Sand: 8% Sitt: 39% Clay: 14% Sitt: 44% Clay: 14% Intersection SILTY SAND (SM) - Mottled dark yellowish brown, very dense, fine grained sand, slightly moist. (HARDPAN DEPOSIT) MC 56/11" Sitt: 14% Clay: 14% Intersection SILTY SAND (SM) - Mottled dark yellowish brown, very dense, fine grained sand, slightly moist. (HARDPAN DEPOSIT) MC 56/11" Sitt: 14% Clay: 14% Intersection SILTY SAND (CH) - Brown, hard, fine grained sand, fine grained sand, slightly moist. (HARDPAN DEPOSIT) MC 56/11" Sitt: 14% Clay: 14%	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTE
SANDY CLAY (CL) - Brown with some mottled orange and black, very stiff, fine grained sand, slightly moist. (HARDPAN DEPOSIT) Mc 39 > 4.5 101 20 Intervention FAT CLAY (CH) - Dark brown, hard, few fine grained sand, slightly moist. (HARDPAN DEPOSIT) MC 39 > 4.5 101 20 Intervention FAT CLAY (CH) - Dark brown, hard, few fine grained sand, slightly moist. (HARDPAN DEPOSIT) MC 39 > 4.5 101 20 Intervention CLAYEY SAND (SC) - Olive brown, medium dense, few gravels, little silt, fine to medium grained sand, slightly moist. (HARDPAN DEPOSIT) MC 28 100 23 Intervention CLAYEY GRAVEL WITH SAND (GC) - Gray and brown, medium dense, fine grained sand, slightly moist. (HARDPAN DEPOSIT) MC 56/11" III: 35 Intervention SILTY SAND (SM) - Mottled dark yellowish brown, very dense, fine grained sand, slightly moist. (HARDPAN DEPOSIT) MC 56/11" MC 56/11" Intervention CLAYEY GRAVEL WITH SAND (GC) - Mottled gray and brown, dense to very dense, moist. MC 56/11" III: 43% CLAYEY GRAVEL WITH SAND (CH) - Brown, hard, fine grained sand, fine	- - 5		SILTY SAND (SM) - Dark brown, medium dense, fine grained sand, slightly moist; possibly Holocene age.		МС	15	> 4 5				
FAT CLAY (CH) - Dark brown, hard, few fine grained sand, slightly moist. (HARDPAN DEPOSIT) Mic 39 > 4.5 101 20 Ittle silt, fine to medium grained sand, slightly moist. (HARDPAN DEPOSIT) CLAYEY SAND (SC) - Olive brown, medium dense, few gravels, little silt, fine to medium grained sand, slightly moist. (HARDPAN DEPOSIT) MC 28 100 23 CLAYEY GRAVEL WITH SAND (GC) - Gray and brown, medium dense, fine grained sand, slightly moist. (HARDPAN DEPOSIT) MC 28 100 23 SILTY SAND (SM) - Mottled dark yellowish brown, very dense, fine grained sand, slightly moist. (HARDPAN DEPOSIT) MC 56/11" MC 56/11" CLAYEY GRAVEL WITH SAND (GC) - Mottled gray and brown, dense to very dense, moist. MC 56/11" MC 56/11"	- - - 10		SANDY CLAY (CL) - Brown with some mottled orange and bla very stiff, fine grained sand, slightly moist. (HARDPAN DEPO	ack, SIT)				101		-	
15 little silt, fine to medium grained sand, slightly moist. (HARDPAN DEPOSIT) MC 28 Clay: 52% 100 23 100 23 CLAYEY GRAVEL WITH SAND (GC) - Gray and brown, medium dense, moist. MC 28 100 23 SILTY SAND (SM) - Mottled dark yellowish brown, very dense, fine grained sand, slightly moist. (HARDPAN DEPOSIT) MC 56/11" MC 56/11" CLAYEY GRAVEL WITH SAND (GC) - Mottled gray and brown, dense to very dense, moist. MC 56/11" MC 56/11"	-		FAT CLAY (CH) - Dark brown, hard, few fine grained sand, sli moist. (HARDPAN DEPOSIT) CLAYEY SAND (SC) - Olive brown, medium dense, few grave	ightly	МС	39	> 4.5	101	20	-	LL: 50 PI: 29 Gravel: 1% Sand: 8% Silt: 39%
CLAYEY GRAVEL WITH SAND (GC) - Gray and brown, medium dense, moist. SILTY SAND (SM) - Mottled dark yellowish brown, very dense, fine grained sand, slightly moist. (HARDPAN DEPOSIT) MC 56/11" CLAYEY GRAVEL WITH SAND (GC) - Mottled gray and brown, dense to very dense, moist. FAT CLAY WITH SAND (CH) - Brown, hard, fine grained sand,	15 _		little silt, fine to medium grained sand, slightly moist. (HARDP DEPOSIT)	AN	мс	28		100	23	-	Clay: 52% LL: 35 Pl: 12
CLAYEY GRAVEL WITH SAND (GC) - Mottled gray and brown, dense to very dense, moist.	- - 20		CLAYEY GRAVEL WITH SAND (GC) - Gray and brown, medi dense, moist. SILTY SAND (SM) - Mottled dark yellowish brown, very dense fine grained sand, slightly moist. (HARDPAN DEPOSIT)	ium							Gravel: 5% Sand: 67% Silt: 14% Clay: 14%
FAT CLAY WITH SAND (CH) - Brown, hard, fine grained sand,	-		CLAYEY GRAVEL WITH SAND (GC) - Mottled gray and brow dense to very dense, moist.	vn,	MC	56/11"					
slightly moist. (HARDPAN DÉPOSIT)	-		FAT CLAY WITH SAND (CH) - Brown, hard, fine grained sand slightly moist. (HARDPAN DEPOSIT)	d,							

GEOTECH BH COLUMN TERM NOTE L

Bottom of borefible at 20.5 reet.
Notes:
1. Stratification lines represent the approximate boundaries between material types and the transitions may be gradual.
2. Modified California (MC) blowcounts were adjusted by multiplying field blowcounts by a factor 0.63.
3. Ground elevation should be considered approximate. Elevations from Doble Thomas 2011 survey data.
4. Backfilled with cement grout immediately upon completion.
5. Sample driving method - rope and cathead.
6. Groundwater was not encountered.

	A	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710			BC	RIN	IG I	NUM	BER B-17-5 PAGE 1 OF 1
	CLIEN	IT _ES	GA-PWA PROJ	ECT NAME	Napa Rive	er Res	toratic	on - O\	/OK Rea	ach
	PROJ		IUMBER 1110-3A PROJ	ECT LOCA	TION Napa	a, Calif	fornia			
	DATE	STAR	TED 11/12/12 COMPLETED 11/12/12 GROU	IND ELEVA	TION 94 ft			HOLE	SIZE	4.5 in
2	DRILL	ING C	ONTRACTOR Northstar Drilling Inc. GROL	IND WATE	R LEVELS:			-		
D.X	DRILL	ING N	IETHOD Solid Stem Auger		F DRILLING	23 1	0 ft / I	Elev 7	0 90 ft	
ITE 1	LOGG		Pat Drumm CHECKED BY KMA							
ν ν	NOTE	s		AFTER DR	ILLING					
8										
LOGS/BORING_LOGS	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
			SANDY SILT (ML) - Dark yellowish brown, hard, fine grained sand slightly moist.	d,						
-3A N/	_		CLAYEY SAND WITH GRAVEL (SC) - Very dark gravish brown,	— мс	38		114	11		11:41
0 - ESA-PWA\1110	- - 10		dense, fine grained sand, little gravel and silt, slightly moist.							PI:22 Gravel: 15% Sand: 39% Silt: 17% Clay: 29%
5/111			CLAYEY SAND (SC) - Grayish brown, very dense, fine grained	МС	32/6"		109	15		11.42
- A:VA3GEO PROJECTS	_ _ 		sand, few gravel and silt, slightly moist. CLAYEY GRAVEL (GC) - Mottled yellow brown and gray, very dense, coarsed grained gravel, slightly moist.			-				EL: 42 PI:24 Gravel: 8% Sand: 52% Silt: 12% Clay: 28%
16:03	-			SPT	53					
ATE.GDT - 5/31/13			SILTY SAND (SM) - Dark brown, medium dense, fine to coarse grained sand, trace fine gravel, moist.							
MPL	_		CLAVEX CRAVEL (CC) Mottled vellow brown medium dense	— мс	19					
ED - A3GEO DATA TE		6	 CLAYET GRAVEL (GC) - Mottled yellow-blown, medium dense, medium dense, silphtly moist. SILTY SAND (SM) - Dark grayish brown, medium dense, medium to coarse sand, wet. CLAYEY GRAVEL (GC) - Mottled, dense, moist. LEAN CLAY (CL) - Mottled grayish brown and dark yellowish brown bard diability moist. 			-				
	_		brown, naru, siigniig moist.	мс	32	> 4.5				
3EOTECH BH COLUMN TERM NOTE LEFT /	Botto Notes 1. Str 2. Mo 3. Gro 4. Ba 5. Sa	m of b atifica dified ound e ckfilled mple c	orehole at 26.5 feet. tion lines represent the approximate boundaries between material typ California (MC) blowcounts were adjusted by multiplying field blowco levation should be considered approximate. Elevations from Doble T d with cement grout immediately upon completion. driving method - rope and cathead.	es and the unts by a fa homas 201	transitions r ictor 0.63. 1 survey da	nay be	e grad	ual.	·	·

	A	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				BO	RIN	IG I	NUM	BER B-17-6 PAGE 1 OF 1
	CLIEN	IT <u>E</u> S	SA-PWA	PROJE	CT NAME	Napa Rive	er Rest	toratio	n - 0\	/OK Rea	ach
	PROJ	ECT N	IUMBER _ 1110-3A	PROJE	CT LOCAT	ION Napa	i, Calif	ornia			
	DATE	STAR	TED _11/12/12 COMPLETED _11/12/12	GROUN	D ELEVA	FION <u>94 ft</u>			HOLE	SIZE _	4.5 in
GР	DRILL	ING C	ONTRACTOR Northstar Drilling, Inc.	GROUN	D WATER	LEVELS:					
17X.	DRILL	ING N	IETHOD Solid Stem Auger	A	T TIME OF	DRILLING					
SITE	LOGG	ED B	Y Pat Drumm CHECKED BY KMA	▼ A	T END OF	DRILLING	26.40	0 ft / E	lev 67	′.60 ft	
- YOK	NOTE	s		Α	FTER DRI	LLING					
LOGS/BORING_LOGS_O	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
A RIVER OVOK/BORING I	 		SILTY SAND (SM) - Dark yellowish brown, medium dense, grained sand, slightly moist.	fine							
- ESA-PWA\1110-34 NAP			POORLY GRADED SAND WITH CLAY (SP) - Dark grayish brown, medium dense, fine to medium grained sand, some gravel, slightly moist.	ו fine	мс	28	> 4.5				
A3GEO PROJECTS/1110	10 		CLAYEY GRAVEL (GC) - Mottled yellowish brown, gray an very dense, fine subrounded gravel up to 1"- diameter, som slightly moist.	d red, ne sand,	мс	32/5"					
3 - A	15		CLAYEY SAND (SC) - Mottled dark yellowish brown with re	ed and	MC	32/5"	-				
ATE.GDT - 5/31/13 16:00	 _ 20		yellow, very dense, little gravel, fine to coarse grained sand slightly moist to moist.	Ι,		32/3					
A TEMPL			LEAN CLAY WITH SAND (CL) - Brown, hard, fine grained slightly moist. (HARDPAN DEPOSIT)	sand,	мс	55	2.25 > 4.5	94	29		LL: 45 PI:18
D - A3GEO DAT	 _ 25		SANDY LEAN CLAY (CL) - Mottled grayish brown and dark yellowish brown, very stiff, moist. (HARDPAN DEPOSIT)	(-						Gravel: 0% Sand: 17% Silt: 48% Clay: 35%
LIGNE			▼		мс	25	> 4.5				
SEOTECH BH COLUMN TERM NOTE LEFT /	Botto Notes 1. Str 2. Mc 3. Gru 4. Ba 5. Sa	m of b atifica odified ound e ckfille mple o	orehole at 26.5 feet. tion lines represent the approximate boundaries between mate California (MC) blowcounts were adjusted by multiplying field b levation should be considered approximate. Elevations from D d with cement grout immediately upon completion. driving method - rope and cathead.	rial types lowcour oble Thc	s and the t its by a fac mas 2011	transitions r ctor 0.63. I survey dat	nay be	e gradi	ual.	<u>.</u>	·

	A	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				BO	RIN	IG I	NUM	BER B-17-7 PAGE 1 OF 1
	CLIEN	NT FS	SA-PWA	PROJEC		Napa Rive	er Rest	oratio	n - OV	OK Rea	ach
	PROJ		IUMBER 1110-3A	PROJEC	T LOCAT	ION Napa	, Calif	ornia		011100	
	DATE	STAR	TED _11/12/12 COMPLETED _11/12/12 0	GROUN		FION 94 ft			HOLE		4.5 in
5	DRILL	LING C	CONTRACTOR Northstar Drilling, Inc.	GROUN	D WATER	LEVELS:					
Ś	DRILL	ING N	IETHOD Solid Stem Auger	A1	TIME OF	DRILLING					
	LOGO	GED B	Y Pat Drumm CHECKED BY KMA	⊥ A1	END OF	DRILLING	25.50) ft / E	lev 68	.50 ft	
	NOTE	s		AF	TER DRI	LLING	1		1		
	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
·) · · · · · · · · · · · · · · · · · ·	 		SILTY SAND (SM) - Dark yellowish brown, dense, fine grain sand, slightly moist; possibly Holocene age.	led							
			CLAYEY SAND (SC) - Mottled red, yellow and white, very d fine to medium grained sand, slightly moist.	ense,							
	_ 5				мс	32/6"					
			CLAYEY GRAVEL WITH SAND (GC) - Mottled dark brown, dense, coarse grained subrounded gravel up to 2" diameter, sand, slightly moist.	, some							
					мс	43					
			SILTY SAND (SM) - Brown, dense, some fine gravel, wet.								
-	_ 10 _		- at 15.0': no recovery in sampler		мс	17					
			LEAN CLAY WITH SAND (CL) - Mottled gravish brown, har	d,							
	20		some fine grained sand and some silt, trace gravel, slightly (HARDPAN DEPOSIT)	moist.							
	_ 20 _		· · · · · ·		мс	30	> 4.5	91	31		
											LL: 45 PI:22
											Gravel: 1% Sand: 26%
											Silt: 33%
	25		$\mathbf{\nabla}$ - at 25.0 ¹ increase in medium to coarse grained sand, wet	arades							Clay. 40 /0
			to loose density.	9.4400	МС	10					
	Botto Notes 1. Str 2. Mc 3. Gr 4. Ba 5. Sa 6. Sa	om of b s: ratifica odified ound e ckfilled imple o imple a	orehole at 26.5 feet. tion lines represent the approximate boundaries between materi California (MC) blowcounts were adjusted by multiplying field bl elevation should be considered approximate. Elevations from Do d with cement grout immediately upon completion. driving method - rope and cathead. at 15.0' had no recovery.	ial types owcoun bble Tho	and the t ts by a fac mas 2011	transitions r ctor 0.63. I survey dat	nay be	e gradi	ual.		

	A	3	GEO A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				BO	RIN	IG I	NUM	BER B-18-1 PAGE 1 OF 1
		IT _E	SA-PWA	PROJEC	T NAME	Napa Rive	er Res	toratio	n - OV	OK Rea	ich
	PROJ	ECT	NUMBER 1110-3A	PROJEC		Napa	a, Calif	ornia			
	DATE	STAF	COMPLETED 11/13/12	GROUN	D ELEVA	TION 95 ft			HOLE		1.5 in
2	DRILL	ING (CONTRACTOR Northstar Drilling, Inc.	GROUN	D WATER	LEVELS:					
9 0	DRILL	ING I	IETHOD Solid Stem Auger	A	TIME OF	DRILLING					
	LOGO	GED B	Y Patrick Drumm CHECKED BY KMA		END OF	DRILLING	18.8	0 ft / E	lev 76	.20 ft	
	NOTE	s		AF	TER DRI	LLING					
	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
			SANDY SILT WITH GRAVEL (ML) - Dark brown, stiff, slig moist.	ntly							
			LEAN CLAY WITH SAND (CL) - Very dark brown, stiff, fine grained sand, moist.	e		14					
			FAT CLAY (CH) - Brown, very stiff, some silt, slightly mois	t.		16	4.0				
	-		 stiff, some coarse gravel, slightly moist. (HARDPAN DEPC FAT CLAY WITH SAND (CH) - Brown, very stiff, fine grain sand, slightly moist. (HARDPAN DEPOSIT) 	very DSIT)_/ ed	SPT	26					
	20		- ★ - at 18.5": Brown, hard		мс	40	> 4.5	95	28		LL: 51
	25										PI: 26 Gravel: 0% Sand: 7% Silt: 43% Clay: 50%
	-				мс	18	4.0				

Bottom of borehole at 26.5 feet.

Notes:

GEOTECH BH COLUMN TERM NOTE

Notes:
 Stratification lines represent the approximate boundaries between material types and the transitions may be gradual.
 Modified California (MC) blowcounts were adjusted by multiplying field blowcounts by a factor 0.63.
 Ground elevation should be considered approximate. Elevations from Doble Thomas 2011 survey data.
 Backfilled with cement grout immediately upon completion.
 Sampler driven by rope and cathead method.

	A	3	GEO A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				BO	RIN	IGN	NUMI	BER B-18-2 PAGE 1 OF 1
			SA-PWA F	ROJEC		Napa Rive	er Res	toratio	<u>n - OV</u>	OK Rea	ch
	DATE	STA	RTED 11/13/12 COMPLETED 11/13/12 COMPLETED	GROUND	ELEVA	[ION 93 ft	, calil	unid	HOLE	SIZE 4	
,	DRILL		CONTRACTOR Northstar Drilling, Inc.	GROUNE	WATER	LEVELS:				0.22	.0
19.0	DRILL	ING	METHOD Solid Stem Auger	AT	TIME OF	DRILLING					
	LOGO	GED B	Y Patrick Drumm CHECKED BY KMA	▼ AT	END OF	DRILLING	17.1	0 ft / E	lev 75	.90 ft	
	NOTE	s		AF	TER DRII	LLING					
	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
ר NG	0		SILT WITH SAND (ML) - Dark brown, firm, fine grained sand	t							
			some gravel, slightly moist.								
2 Z Z Z Z Z Z											
SA-PWANTIO-34 NAP			LEAN CLAY WITH SAND (CL) - Dark brown and reddish bro stiff, some silt, low plasticity, some mottling, slightly moist. (HARDPAN DEPOSIT)	own,	мс	14	4.25				
-	10										
			CLAYEY GRAVEL WITH SAND (GC) - Mottled dark reddish brown, dense, coarse subrounded gravel up to 2 inches in diameter, moist.	1	МС	49					
AJGEO PL	 15										
- 00:01 01/10/0 -			CLAYEY SAND WITH GRAVEL (SC) - Mottled reddish brow medium dense, fine to coarse grained sand, fine to medium gravel, moist.	/n,	SPT	15					
UAIA IEMILAIE.GU	 _ <u>20</u> 		- at 20.0': Wet, gravel up to 1 inch diameter		SPT	29					
			LEAN CLAY WITH SAND (CL) - Dark yellowish brown, hard grained sand, sand lenses, moist. (HARDPAN DEPOSIT) - at 25.0': No recovery	, fine							
ALIG					MC	53					
	Botto	m of	porehole at 26.5 feet.								

Notes:
 Stratification lines represent the approximate boundaries between material types and the transitions may be gradual.
 Modified California (MC) blowcounts were adjusted by multiplying field blowcounts by a factor 0.63.
 Ground elevation should be considered approximate. Elevations from Doble Thomas 2011 survey data.
 Backfilled with cement grout immediately upon completion.
 Sampler driven by rope and cathead method.

GEOTECH BH COLUMN TERM N

	A	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				BO	RIN	IG I	NUMI	BER B-18-3 PAGE 1 OF 1
	CLIEN	IT ES	SA-PWA P	ROJEC	T NAME	Napa Rive	er Rest	toratio	n - OV	/OK Rea	ch
	PROJ		UMBER 1110-3A P	ROJEC		FION Napa	a. Calif	ornia			
	DATE	STAR	TED 11/13/12 COMPLETED 11/13/12 G			TION 93 ft	,		HOI F	SIZE 4	5 in
		ING C	CONTRACTOR Northstar Drilling Inc								
GPJ				۸T							
П 18				A1							
- SI	LOGG	EDB		AI	END OF	DRILLING					
XoX	NOTE	s		AF	TER DRI	LLING	1				
LOGS/BORING_LOGS_(o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
JECTS\1110 - ESA-PWA\1110-3A NAPA RIVER OVOK\BORING I			SILTY SAND (SM) - Dark brown, medium dense, fine graine sand, slightly moist; possibly Holocene age. FAT CLAY (CH) - Brown, very stiff, little fine grained sand, sl moist. CLAYEY GRAVEL (GC) - Mottled brown, dense, slightly moi	d lightly	мс	17	> 4.5				
FE.GDT - 5/31/13 15:30 - A:\A3GEO PRO	 <u>15</u> 20		SAND WITH SILT (SP) - Mottled dark brown, medium dense trace clay, fine to medium grained sand, low plasticity fines, slightly moist. - at 16.0': Iron-oxide staining	3,	мс	11					
DATA TEMPLA			WELL GRADED GRAVEL (GW) - Mottled dark brown, dense some medium to coarse grained sand, wet.	9,	мс	50					
ALIGNED - A3GEC	 25 		SILTY SAND (SM) - Pale brown with yellowish brown mottlin medium dense, fine grained sand, moist. (HARDPAN DEPO	ig, SIT)	мс	15					
GEOTECH BH COLUMN TERM NOTE LEFT	Botto Notes 1. Str 2. Mo 3. Gro 4. Ba 5. Sa 6. Gro	m of b atifica dified bund e ckfillee mpler bundw	orehole at 26.5 feet. tion lines represent the approximate boundaries between materia California (MC) blowcounts were adjusted by multiplying field blo elevation should be considered approximate. Elevations from Dol d with cement grout immediately upon completion. driven by rope and cathead method. ater was not encountered.	al types owcount ble Tho	and the s by a fa nas 201	transitions r ctor 0.63. 1 survey da	nay be	e gradi	ual.		

CLIE PRO DATE DRIL DRIL	NT <u>ES</u> JECT N STAR LING C	A-PWA PR UMBER 1110-3A PR TED 11/13/12 COMPLETED 11/13/12 GR ONTRACTOR Northstar Drilling, Inc. GR ETHOD Solid Stem Auger	OJECT NAM OJECT LOC OUND ELEV OUND WATI AT TIME	E <u>Napa Riv</u> ATION <u>Nap</u> ATION <u>93 f</u> ER LEVELS: OF DRILLING	<u>er Res</u> a, Cali ⁱ t 3	toratio fornia	n - 0\ HOLE	/OK Rea	<u>ch</u> 5 in
	GED BY ES	Patrick Drumm CHECKED BY KMA	AT END C	of Drilling Rilling	19.2	0 ft / E	lev 73	8.80 ft	
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
- ·		SILTY SAND (SM) - Dark brown, medium dense, fine grained sand, low plasticity fines, slightly moist.							
 		- at 6.0': Dark grayish brown, fine to medium grained sand, little fine gravel, no plasticity.	e M	C 15	_				
<u>10</u> 		CLAYEY GRAVEL (GC) - Mottled dark brown and dark reddish brown, medium dense, few fine sand, iron oxide staining, sligh moist.	tiy M	C 26	-				
 		 - at 15.0': wet, fine to coarse gravel. - at 16.5': rounded 2 inch diameter clast. SILTY SAND (SM) - Dark brown, loose, wet. 	М м	C 37	-				
 		POORLY GRADED GRAVEL WITH SAND (GP) - Brown, med	ium	C 7	-				Sample at 20.0 ft had no recovery.
		dense, little silt, wet.	SF	PT 18	_				

Stratification lines represent the approximate boundaries between material types and the transitions may be gradual.
 Stratification lines represent the approximate boundaries between material types and the transitions may be gradual.
 Modified California (MC) blowcounts were adjusted by multiplying field blowcounts by a factor 0.63.
 Ground elevation should be considered approximate. Elevations from Doble Thomas 2011 survey data.
 Backfilled with cement grout immediately upon completion.
 Sampler driven by rope and cathead method.

GEOTECH BH COLUMN TERM NOTE

A	3	GEO A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				BO	RIN	IG I	NUMI	BER B-18-5 PAGE 1 OF 1	
CLIE	NT ES	SA-PWA PRC	OJECT N		Napa Rive	er Rest	toratio	n - 0\	/OK Rea	ch	
PRO.	JECT N	UMBER 1110-3A PRC	OJECT L	OCAT	ION Napa	ı, Calif	ornia				
DATE	STAR	TED <u>11/14/12</u> COMPLETED <u>11/14/12</u> GRC		EVAT	ION <u>95 ft</u>			HOLE	SIZE _4	.5 in	
DRIL	LING C	ONTRACTOR Northstar Drilling, Inc. GRC		ATER	LEVELS:						
DRIL	LING N	ETHOD Solid Stem Auger	AT TI	ME OF	DRILLING						
LOG	GED B	Patrick Drumm CHECKED BY KMA	AT EN	ID OF	DRILLING						
NOTE	ES		AFTER	r Drii	LING						
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE ITPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES	
		SILTY SAND (SM) - Dark brown to light brown, medium dense,	e,								
		age.	Μ	МС	18						
		- At 2.5': Loose, few gravel.		SPT	10						
		SILT WITH SAND (ML) - Dark yellowish brown, very stiff, moderate cementation fine grained sand, trace fine roots, sligh	htly								
		moist; possibly Holocene age.		MC	21	> 4.5					
		- At 6.5': Stiff.		SPT	15						
10		CLAYEY SAND (SC) - Mottled orange and brown, medium den- fine to coarse grained sand, few gravels, slightly moist.	nse,	MC	43						
[-	1////										
Botto	ottom of borehole at 11.5 feet.										

Notes:
 Stratification lines represent the approximate boundaries between material types and the transitions may be gradual.
 Modified California (MC) blowcounts were adjusted by multiplying field blowcounts by a factor 0.63.
 Ground elevation should be considered approximate. Elevations from Doble Thomas 2011 survey data.
 Backfilled with cement grout immediately upon completion.
 Sampler driven by rope and cathead method.
 Groundwater was not encountered.

GEOTECH BH COLUMN TERM NOTE LEFT ALIGNED - A3GEO DATA TEMPLATE.GDT - 5/31/13 15:30 - A: VA3GEO PROJECTS/1110 - ESA-PWA/1110-3A NAPA RIVER OVOKIBORING LOGS/BORING_LOGS_OVOK - SITE 18. GPJ

A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710	BORING NUMBER B-18-6 PAGE 1 OF 1
CLIENT ESA-PWA	PROJECT NAME Napa River Restoration - OVOK Reach
PROJECT NUMBER 1110-3A	PROJECT LOCATION Napa, California
DATE STARTED 11/14/12 COMPLETED 11/14/12	GROUND ELEVATION 94 ft HOLE SIZE 4.5 in
DRILLING CONTRACTOR Northstar Drilling, Inc.	GROUND WATER LEVELS:
DRILLING METHOD Solid Stem Auger	AT TIME OF DRILLING
LOGGED BY Patrick Drumm CHECKED BY KMA	AT END OF DRILLING
NOTES	AFTER DRILLING
MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER ADJUSTED BLOW COUNTS (N VALUE) POCKET PEN. (tsf) (tsf
LEAN CLAY (CL) - Yellowish brown, stiff, few fine sand moist; possibly top soil. SILTY SAND (SM) - Brown, medium dense, fine graine	I, slightly
SILT WITH SAND (ML) - Dark yellowish brown, stiff, fin sand, fines have no plasticity, moderately cemented, tra-	ne grained SPT 14
- At 5.0': Very stiff.	MC 21 > 4.5
- At 6.5': Stiff.	SPT 14
10 CLAYEY GRAVEL (GC) - Brown, dense, subangular cograined gravel up to 1-1/2 inch diameter, slightly moist. Bottom of borehole at 10.0 feet. Notes: 1. Stratification lines represent the approximate boundaries between m 2. Modified California (MC) blowcounts were adjusted by multiplying fie 3. Ground elevation should be considered approximate. Elevations from 4. Backfilled with cement grout immediately upon completion. 5. Sampler driven by rope and cathead method. 6. Groundwater was not encountered.	haterial types and the transitions may be gradual. add blowcounts by a factor 0.63. m Doble Thomas 2011 survey data.

	NT ES	A-PWA		PROJEC	CT NAME	Napa Rive	er Res	toratio	n - 0\	/OK Rea	ch
PROJ	ECT N	JMBER 1110-3A		PROJE		Napa	i, Calif	ornia			
DATE	STAR	TED 11/14/12	COMPLETED11/14/12	GROUN	D ELEVA	TION <u>93 ft</u>			HOLE	SIZE 4	.5 in
DRILI	ING CO	ONTRACTOR Northstar	Drilling, Inc.	GROUN	D WATER	LEVELS:					
DRILI	ING M	ETHOD Solid Stem Aug	er	A		DRILLING					
OGC	GED BY	Patrick Drumm	CHECKED BY KMA	A	T END OF	DRILLING					
NOTE	s			A	FTER DRI	LLING					
o DEPIH (ft)	GRAPHIC LOG	MA	FERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAE TESTS / NOTI
-		SILTY SAND (SM) - B slightly moist; possibly	rown, medium dense, fine grained s v Holocene age.	and,				-			
-		\neg - at 2.0': Few hair like	fibers.	/	мс	16	> 4.5	-			
-		SANDY LEAN CLAY (grained sand, slightly	CL) - Dark yellowish brown, stiff, fine moist. (HARDPAN DEPOSIT)	9	SPT	13					
-		- at 6 0' [.] Medium plast	icity very stiff		мс	20	> 4.5				
-		- at 6.5': Some reddisl	b brown mottling, stiff.		SPT	9	-				
10		CLAYEY SAND WITH	GRAVEL (SC) - Brown, medium de	ense,	мс	28					
- 3otto	om of bo	fine to medium graine <u>1-1/2 inch diameter, s</u> prehole at 11.5 feet.	ightly moist.								
otto lote . Sti . Mo . Gr . Sa . Gr	m of bo s: ratificati odified (ound el ickfilled mpler c oundwa	tine to medium graine 1-1/2 inch diameter, s prehole at 11.5 feet. on lines represent the ap California (MC) blowcoun evation should be consid with cement grout imme liriven by rope and cathea ater was not encountered	proximate boundaries between mate s were adjusted by multiplying field ered approximate. Elevations from E diately upon completion. Id method.	erial types blowcoun Doble Tho	s and the t its by a fa mas 2017	transitions r ctor 0.63. 1 survey dat	nay be	e gradi	ual.		
otto lote . Sti . Gr . Ba . Sa . Gr	om of bo s: ratificati odified (ound el ickfilled impler c oundwa	tine to medium graine 1-1/2 inch diameter, s prehole at 11.5 feet. on lines represent the ap California (MC) blowcoun evation should be consid with cement grout imme lriven by rope and cathea ater was not encountered	proximate boundaries between mate is were adjusted by multiplying field ered approximate. Elevations from E diately upon completion. Id method.	erial types blowcoun Doble Tho	s and the t ts by a fa mas 2017	transitions r ctor 0.63. 1 survey dat	nay be	e gradi	ual.		
- Gottc lote - Sti - Gr - Ba - Sa - Gr	om of bo s: ratificati odified (ound el ickfilled impler c oundwa	tine to medium graine 1-1/2 inch diameter, s prehole at 11.5 feet. on lines represent the ap California (MC) blowcoun evation should be consid with cement grout imme triven by rope and cathea ater was not encountered	ightly moist. proximate boundaries between mate is were adjusted by multiplying field ered approximate. Elevations from E diately upon completion. Id method.	erial types blowcoun Doble Tho	s and the t ts by a fa mas 2017	transitions r ctor 0.63. 1 survey dat	nay be	e gradi	ual.		
Bottc Note: Stude: Gr Bage: Santa Sa	om of bo s: ratificati odified (ound el ickfilled impler o oundwa	tine to medium graine 1-1/2 inch diameter, s prehole at 11.5 feet. on lines represent the ap California (MC) blowcoun evation should be consid with cement grout imme lriven by rope and cathea atter was not encountered	ightly moist. proximate boundaries between mate is were adjusted by multiplying field ered approximate. Elevations from E diately upon completion. Id method.	erial types blowcoun Doble Tho	s and the t its by a fa omas 2017	transitions r ctor 0.63. 1 survey dat	nay be	e gradi	ual.		
	om of bo s: ratificati odified (ound el ickfilled impler o oundwa	tine to medium graine 1-1/2 inch diameter, s prehole at 11.5 feet. on lines represent the ap California (MC) blowcoun evation should be consid with cement grout imme triven by rope and cathea ter was not encountered	proximate boundaries between mate is were adjusted by multiplying field ered approximate. Elevations from E diately upon completion. Id method.	erial types blowcoun Doble Tho	s and the t its by a fa omas 2017	transitions r ctor 0.63. 1 survey dat	nay be	e gradi	ual.		
Bottc Note I. Str 2. Mo 3. Gr 4. Ba 5. Sa 5. Gr	om of bo s: ratificati odified (ound el ickfilled impler o oundwa	tine to medium graine 1-1/2 inch diameter, s prehole at 11.5 feet. on lines represent the ap California (MC) blowcoun evation should be consid with cement grout imme triven by rope and cathea ter was not encountered	proximate boundaries between mate is were adjusted by multiplying field ered approximate. Elevations from E diately upon completion. Id method.	erial types blowcoun Doble Tho	s and the f its by a fa omas 2017	transitions r ctor 0.63. 1 survey dat	nay be	e gradi	ual.		
Bottc Note Str Ba Ba S Gr S Gr	om of bo s: ratificati odified (ound el ickfilled impler c oundwa	fine to medium graine 1-1/2 inch diameter, s prehole at 11.5 feet. on lines represent the ap California (MC) blowcoun evation should be consid with cement grout imme lriven by rope and cathea atter was not encountered	ightly moist. proximate boundaries between mate is were adjusted by multiplying field ered approximate. Elevations from E diately upon completion. Id method.	erial types blowcoun Doble Tho	s and the f ts by a fa mas 2017	transitions r ctor 0.63. I survey dat	nay be	e gradi	ual.		

CL PR			Berkeley, CA 94710								PAGE 1 OF 1
PR	IEN	г_ <u>е</u> я	SA-PWA P	ROJECT		Napa Rive	r Rest	oratio	n - OV	OK Rea	ch
	ROJE	CT N	UMBER 1110-3A P	ROJECT		ION Napa	, Calif	ornia			
IDA	TE S	STAR	TED <u>11/14/12</u> COMPLETED <u>11/14/12</u> G	GROUND	ELEVA	ION <u>91 ft</u>			HOLE	SIZE 4	.5 in
DR	RILLI	NG C	ONTRACTOR Northstar Drilling, Inc. G	GROUND	WATER	LEVELS:					
DR	RILLI	NG M	ETHOD Solid Stem Auger	AT	TIME OF	DRILLING					
LO	GGE	ED B)	Patrick Drumm CHECKED BY KMA	AT	end of	DRILLING					
NO	DTES	s		AFT	ER DRII	LING					
O DEPTH	(ff)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
-	-		SILTY SAND (SM) - Brown, loose to medium dense, fine grains and, slightly moist; possibly Holocene age.	ained	мс	13	> 1 5				
	Ì		SANDY SILT (ML) - Dark yellowish brown, stiff, fine grained s	sand,		10	- т.б				
	_		signay most.		SPT	9					
5	5		- at 5.0': Some reddish brown mottling, single 3-inch long roo	ot.	мс	13	> 4.5				
-	-		- at 6.5': Firm, some reddish brown mottling. (HARDPAN DEPOSIT)		SPT	6					
	0		- at 10.0': Stiff, low to medium plasticity. - at 11.5': Fine gravel.		мс	12	3.75				

Bottom of borehole at 11.5 feet.

Bottom of borehole at 11.5 feet. Notes: 1. Stratification lines represent the approximate boundaries between material types and the transitions may be gradual. 2. Modified California (MC) blowcounts were adjusted by multiplying field blowcounts by a factor 0.63. 3. Ground elevation should be considered approximate. Elevations from Doble Thomas 2011 survey data. 4. Backfilled with cement grout immediately upon completion. 5. Sampler driven by rope and cathead method. 6. Groundwater was not encountered.

A	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				BO	RIN	IG I	NUMI	BER B-19-1 PAGE 1 OF 1
CLIEN	т_ <u>es</u>	A-PWA PR	OJEC	T NAME	Napa Rive	er Res	toratio	n - O\	/OK Rea	ich
PROJI	ECT N	UMBER 1110-3A PR	OJEC		ION Napa	, Calif	ornia			
DATE	STAR	TED <u>11/19/12</u> COMPLETED <u>11/19/12</u> GR			FION <u>100 f</u>	ft		HOLE		I.5 in
DRILL	ING C	ONTRACTOR Northstar Drilling, Inc. GR	OUN	D WATER	LEVELS:					
DRILL	ING M	ETHOD Solid Stem Auger	AT	TIME OF	DRILLING					
LOGG	ED B)	Pat Drumm CHECKED BY KMA	AT	END OF	DRILLING					
NOTE	s		AF		LLING					
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
 5		SANDY SILT WITH GRAVEL (ML) - Mottled dark brown, firm f stiff, slightly moist.	to							
 10		SILTY SAND WITH GRAVEL (SM) - Mottled dark yellowish br with red and yellow, dense, fine to coarse grained sand, fine to coarse gravel, slightly moist.	own >	SPT	31					
		SANDY CLAY (CL) - Olive brown, very stiff, fine to coase grain sand, trace fine gravel, low plasticity fines, moist. (HARDPAN DEPOSIT) CLAYEY SAND (SC) - Mottled olive gray with red and yellow, medium dense, fine to coarse sand, few fine gravel, wet. (HARDPAN DEPOSIT) CLAYEY GRAVEL WITH SAND (GC) - Mottled brown, mediur dense, subrounded 2-1/2 in diameter coarse gravel in shoe, m CLAYEY SAND (SC) - Dark yellowish brown, medium dense, to medium grained sand, moist to wet. (HARDPAN DEPOSIT)	ned n oist.	MC SPT	21					
	CLIEN PROJI DATE DRILL DRILL LOGG NOTE: HL(H) 0 	A 3 I	A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710 CLIENT ESA-PWA PR PROJECT NUMBER 1110-3A PR DATE STARTED 11/19/12 COMPLETED 11/19/12 GF DRILLING CONTRACTOR Northstar Drilling, Inc. GR GR DRILLING METHOD Solid Stem Auger GR LOGGED BY Pat Drumm CHECKED BY KMA NOTES	A3GEO, Inc. 131 Seventh St., Unit E Berkeley, CA 94710 CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine to medium grained sand, moist to wet. (HARDPAN DEPOSIT) CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine to medium grained sand, moist to wet. (HARDPAN DEPOSIT)	A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710 CLIENT ESA-PWA PROJECT NAME PROJECT NUMBER 1110-3A PROJECT LOCAT PROJECT NUMBER 1110-3A COMPLETED 11/19/12 GROUND ELEVAT DATE STARTED 11/19/12 COMPLETED 11/19/12 GROUND WATER DRILLING CONTRACTOR Northstar Drilling, Inc. GROUND WATER DRILLING CONTRACTOR Northstar Drilling, Inc. GROUND WATER DRILLING METHOD Solid Stem Auger AT TIME OF NOTES AFTER DRII UGGED BY Pat Drumm CHECKED BY KMA AT END OF NOTES AFTER DRII U SANDY SILT WITH GRAVEL (ML) - Mottled dark brown, firm to stiff, slightly moist. SANDY SILT WITH GRAVEL (ML) - Mottled dark brown, firm to stiff, slightly moist. SANDY CLAY (CL) - Olive brown, very stiff, fine to coase grained sand, trace fine gravel, low plasticity fines, moist. (HARDPAN DEPOSIT) CLAYEY SAND (SC) - Mottled olive gray with red and yellow, medium dense, fine to coarse gravel, wet. (HARDPAN DEPOSIT) CLAYEY SAND (SC) - Mottled olive gray with red and yellow, medium dense, fine to coarse gravel, wet. (HARDPAN DEPOSIT) CLAYEY SAND (SC) - Dark yellowish brown, medium dense, subrounded 2-1/2 in diameter coarse gravel in shoe, moist. CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine to medium grained sand, moist to wet. (HARDPAN DEPOSIT)	A3GEO. Inc. Barkeley, CA 94710 CLAYEY SAND WITH GRAVEL (ML) - Mottled dark vellowish brown with red and vellow, dense, fine to coarse grained sand, fine to CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine to medium grained sand, moist to wet. (HARDPAN DEPOSIT)	A3GEO A3GEO A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710 CLIENT ESA-PWA PROJECT NUMBER 1110-3A DATE STARTED 11/19/12 GROUND ELEVATION 100 ft GROUND WATER LEVELS: DRILLING CONTRACTOR Northstar Drilling, Inc. GROUND WATER LEVELS: DRILLING METHOD Solid Stem Auger AT TIME OF DRILLING AT END OF DRILING	A3GEO, Inc. Berkeley, CA 94710 SALO EXAMPLE SALE SALE SALE SALE SALE SALE SALE SA	A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710 CLIENT ESA-PWA PROJECT NAME Napa River Restoration - ON PROJECT NUMBER 1110-3A PROJECT NAME Napa River Restoration - ON PROJECT NUMBER 1110-3A PROJECT LOCATION Napa, California DATE STARTED 111/19/12 COMPLETED 111/19/12 GROUND ELEVATION 100 ft HOLE DRILLING CONTRACTOR Northstar Drilling, Inc. DRILLING CONTRACTOR Northstar Drilling, Inc. DRILLING METHOD Solid Stem Auger A TTIME OF DRILLING A FER D	A3GEO A3GEO A3GEO, Inc. Barkeley, CA 94710 CLIENT ESA-PWA PROJECT NUMBER 1110-3A PROJECT NUMBER 1110-3A DATE STARTED 11/19/12 GROUND ELEVATION 100 ft HOLE SIZE 4 PROJECT LOCATION Napa, California GROUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING NOTES AFER DRILLING NOTES AFER DRILLING AFER DRILLING AFER DRILLING SILTY SAND WITH GRAVEL (ML) - Mottled dark brown, firm to SILTY SAND WITH GRAVEL (ML) - Mottled dark brown, firm to SILTY SAND WITH GRAVEL (ML) - Mottled dark yellowish brown with red and yellow, dense, fine to coarse grained sand, fine to Carse gravel, slightly moist. SANDY CLAY (CL) - Olive brown, very stiff, fine to coase grained sand, fine to CLAYEY SAND (SC) - Mottled dive gravel in shee, moist. CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine to coarse gravel in shee, moist. CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine to coarse gravel in shee, moist. CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine to coarse gravel in shee, moist. CLAYEY SAND (SC) - Dark yellowish brown, medium dense, fine to medium grained sand, moist to wet. (HARDPAN DEPOSIT)

Bottom of borehole at 18.0 feet.

Bottom of borehole at 18.0 reet. Notes: 1. Stratification lines represent the approximate boundaries between material types and the transitions may be gradual. 2. Modified California (MC) blowcounts were adjusted by multiplying field blowcounts by a factor 0.63. 3. Ground elevation should be considered approximate. Elevations from Lidar topographic map. 4. Caving observed in bottom 1 foot of hole. 5. Sampler driven by rope - cathead method. 6. Groundwater not encountered

Groundwater not encountered.
 Piezometer installed in excavated boring. See Report for additional information.

GEOTECH BH COLUMN TERM NOTE LEFT ALIGNED - A3GEO DATA TEMPLATE.GDT

	A	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				BO	RIN	IG I	NUM	BER B-19-2 PAGE 1 OF 1
		IT _ES	SA-PWA	PROJEC	T NAME	Napa Rive	er Res	toratio	n - O∖	/OK Rea	ch
	PROJ	ECT N	UMBER 1110-3A	PROJEC	T LOCAT	ION Napa	i, Calif	ornia			
	DATE	STAR	TED11/19/12 COMPLETED11/19/12	GROUN	D ELEVA	TION 100	ft		HOLE		l.5 in
	DRILL	ING C	ONTRACTOR Northstar Drilling, Inc.	GROUN	D WATER	LEVELS:					
19.0	DRILL	ING N	ETHOD Solid Stem Auger	A	TIME OF	DRILLING					
-Sil	LOGO	ED B	Pat Drumm CHECKED BY KMA	A	END OF	DRILLING					
š I	NOTE	s		A	TER DRI	LLING					
LOGS/BORING_LOGS_O	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
	- - - 5		SILTY SAND WITH GRAVEL (SM) - Dark brown, very stiff coarse grained sand, fine to coarse gravel, slightly moist; p Holocene age.	, fine to oossibly	Ммс	17	4.5				
0 - ESA-PWA/1110-34	- - - 10		CLAYEY SAND WITH GRAVEL (SC) - Brown, medium de fine to coarse grained sand, fine gravel, moist to wet.	ense,							
	-		POORLY GRADED SAND WITH CLAY AND GRAVEL (SI Mottled dark brown with red and yellow, dense, medium to grained sand, fine to coarse gravel, medium plasticity fines	P-SC) - coarse s, wet.	мс	37					
5/31/13 15:34 - A: \A3GEU PKUL	- - - - - -		SILTY SAND (SM) - Pale brown, very dense, fine grained few fine gravel, slightly moist. (HARDPAN DEPOSIT)	sand,		32/4"					
Ë	Botto	m of h	orehole at 17 8 feet								

Bottom of borehole at 17.8 feet.
Notes:

Stratification lines represent the approximate boundaries between material types and the transitions may be gradual.
Modified California (MC) blowcounts were adjusted by multiplying field blowcounts by a factor 0.63.
Ground elevation should be considered approximate. Elevations from Lidar topographic map.
Caving observed in bottom 1 foot of hole.
Sampler driven by rope - cathead method.
Groundwater not encountered.
Piezometer installed in excavated boring. See Report for additional information.

	A	3	GEO A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				BO	RIN	IG I	NUM	BER B-22-1 PAGE 1 OF 1
	CLIEN	NT <u>ES</u>	A-PWA	PROJEC		Napa Rive	r Rest	oratio	n - OV	/OK Rea	ach
	PROJ	ECIN	UMBER 1110-3A	PROJEC			, Calif	ornia		0175	4.5.5
		STAR	TED 11/6/12 COMPLETED 11/6/12 ONTRACTOR Northester Drilling Las	GROUNI		$10N 92\pi$			HOLE	SIZE _	4.5 IN
5L)				GROUNI							
1 2 2							20.10		101 71	00 #	
n - /	NOTE	си и С					20.10	J IL / E	lev / I	.90 11	
		.5		~							
	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
			FAT CLAY WITH SAND (CH) - Yellowish brown with some mottling, stiff, slightly moist. (HARDPAN DEPOSIT)	orange	мс	13	> 4.5				
	 		- at 3.0': Very stiff.		мс	25	> 4.5				
JAN NAP	 				мс	23					
			CLAYEY SAND (SC) - Mottled dark brown and dark yellow brown, medium dense, fine grained sand, moist. (HARDPA DEPOSIT)	ish N	<u> </u>						
GEO PROJECI SVI 110	<u> 10 </u>		- at 10.0': Dense.		мс	32					
15:35 - A: 43	 		CLAYEY GRAVEL WITH SAND (GC) - Mottled brown and dense, subgrounded coarse gravel, wet.	gray,	мс	43					
AIE.GUI - 5/31/13	 20		•		<u> </u>						
			FAT CLAY (CH) - Light yellowish brown, stiff, low plasticity trace fine grained sand, moist. (HARDPAN DEPOSIT)	fines,	мс	11	3.25 2.0	83	39		LL: 51
JI ECH BH CULUMIN IERM NUTE LEFT ALIGINED - AGGEO DATA	Botto Note: 1. Str 2. Mc 3. Gr 4. Ba 5. Sa	m of b s: adificat ound e ckfillec mpler o	orehole at 21.5 feet. ion lines represent the approximate boundaries between mate California (MC) blowcounts were adjusted by multiplying field b levation should be considered approximate. Elevations from D l with cement grout immediately upon completion. driving method - rope and cathead.	rial types blowcount oble Tho	and the t s by a fac nas 2011	ransitions n ctor 0.63. survey dat	a.	9 gradı	ual.		PI: 27 Gravel: 0% Sand: 3% Silt: 82% Clay: 15%

Ю

	A	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				BC	RIN	IG I	NUM	BER B-22-2 PAGE 1 OF 1
		\T ⊏<		IECT	NAM	Nana Riv	or Ros	toratio	n - 0\		ich.
	PRO			IECT		TION Nan	a Cali	fornia	<u>, </u>		
		STAR	TED 11/6/12 COMPLETED 11/6/12 GRO		FIFV			Ionna		SIZE 4	
	DRILI		CONTRACTOR Northstar Drilling Inc. GRO								
C.GP			IETHOD Solid Stem Auger								
TE 2				ΔΤΙ			13.3	0 ft / F	lev 84	L 70 ft	
OVOK - S	NOTE	S		AFT	ER DF						
LOGS/BORING_LOGS	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
VOK\BORING			SILTY SAND (SM) - Dark yellowish brown, fine grained sand, medium dense, slightly moist; possibly Holocene age. POORLY GRADED SAND (SP) - Mottled gray and brown, mediu dense, slightly moist.	im	мс	2 10					
A RIVER O	5		SANDY LEAN CLAY (CL) - Mottled yellowish brown with orange stiff, fine grained sand, moderate plasticity, slightly moist. (HARDPAN DEPOSIT)		мо	2 14	4.5	-			
4-PWA\1110-34 NAP			- at 5.0': Mottled dark grayish brown and orange.		мо	2 15	4.5	-			
EO PROJECTS/1110 - ES/	<u>10</u>		 - at 10.0': Fine grained gravel. CLAYEY GRAVEL WITH SAND (GC) - Mottled brown and gray, dense, slightly moist. SANDY LEAN CLAY (CL) - Yellowish brown, stiff, fine grained 		мо	2 38	-				
0T - 5/31/13 15:35 - A:\A3G			sand, plastic fines, wet. (HARDPAN DEPOSIT)		мо	2 15	> 4.5	_			
Щ. СО	-	¢//	CLAYEY GRAVEL WITH SAND (GC) - Mottled reddish brown,	_							
TEMPLAT			olive brown, and gray, dense, subrounded fine gravel, coarse grained sand, moist.		мс	44	_				
GEOTECH BH COLUMN TERM NOTE LEFT ALIGNED - A3GEO DATA	Botto Note: 1. Str 2. Mc 3. Gr 4. Ba 5. Sa	om of b s: ratifica odified ound e ickfilled impler	orehole at 21.5 feet. tion lines represent the approximate boundaries between material ty California (MC) blowcounts were adjusted by multiplying field blowco elevation should be considered approximate. Elevations from Doble ⁻ d with cement grout immediately upon completion. driving method - rope and cathead.	pes a bunts Γhom	nd the by a f as 20	e transitions r actor 0.63. 11 survey da	may bo	e grad	ual.		

	A	3	G≣O	A3GEO, Inc. 1331 Seventh S Berkeley, CA 9	St., Unit E 4710				BC	RIN	IG I	NUMI	BER B-22-3 PAGE 1 OF	3 1
	CLIEN	IT ES	SA-PWA			PROJEC	T NAME	Napa Rive	er Res	toratio	n - 0\	/OK Rea	ich	
	PROJ	ECT N	UMBER 1110-3A			PROJEC		TION Napa	a, Calif	ornia				
	DATE	STAR	TED 11/6/12	COMPL	ETED 11/6/12	GROUN	DELEVA	TION 95 ft			HOLE	SIZE 4	1.5 in	_
_	DRILL	ING C	ONTRACTOR NO	rthstar Drilling Ir		GROUN) WATER	LEVELS:						
S.GP		ING M	IFTHOD Solid Ste	m Auger		0.10 0.11		DRILLING						
TE 2			Patrick Drumm	CHECK		AT								
 SI 	NOTE	د د د. د				AF								
0 NO		<u> </u>							1		1			_
LOGS/BORING_LOGS_	DEPTH (ft)	GRAPHIC LOG		MATERIAL D	ESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES	3
2H BH COLUMN TERM NOTE LEFT ALIGNED - A3GEO DATA TEMPLATE.GDT - \$31/13 15:35 - A:VA3GEO PROJECTS1110 - ESA-PWA1110-3A NAPA RIVER OVOKBORING		m of b atification pound end ckfilled pound end chilled	SILTY SAND (S sand, slightly m SANDY CLAY (grained sand, s CLAYEY GRAV subrounded gra SANDY FAT CL reddish brown, s orehole at 16.5 feet tion lines represent California (MC) blov levation should be d with cement grout driving method - roj ater was not encou	M) - Dark brown oist; Possible Ho (CL) - Mottled gra lightly moist. (H <i>I</i> /EL (GC) - Mottle wel, slightly mois -AY (CH) - Mottle stiff, fine grained t. the approximate wcounts were ac considered appr immediately up pe and cathead. ntered.	ayish brown and ora ARDPAN DEPOSIT ad brown and gray, st. ed dark yellowish bi sand, wet. (HARDI boundaries betwee justed by multiplyin oximate. Elevations on completion.	ne grained ange, stiff, fine) dense, rown and PAN DEPOSIT) en material types ng field blowcoun s from Doble Tho	MC MC MC and the t s by a fac mas 2011	14 35 11 transitions r ctor 0.63. 1 survey dat	> 4.5 4.5 nay be	e grad	ual.			

	IT <u>ES</u> FCT N	A-PWA P	PROJECT		Napa Rive	er Rest	toratio ornia	n - O∖	/OK Rea	<u>ch</u>
DATE	STAR	TED 11/6/12 COMPLETED 11/6/12 C	GROUND	ELEVA	FION 93 ft	, oam	onna	HOLE	SIZE 4	.5 in
ORILL	ING C	ONTRACTOR Northstar Drilling, Inc.	GROUND	WATER	LEVELS:				_	
ORILL	ING M	ETHOD Solid Stem Auger	AT	TIME OF	DRILLING					
LOGG	ED BY	Patrick Drumm CHECKED BY _KMA	AT I AFT	end of Er drii	DRILLING					
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
		SILTY SAND (SM) - Dark brown, medium dense, fine graine sand, slightly moist; Possible Holocene age.	d							
-		SANDY LEAN CLAY (CL) - Mottled gray and dark yellowish fine grained sand, stiff, slightly moist. (HARDPAN DEPOSIT	brown,	мс	15	> 4.5				
- 10	0	CLAYEY GRAVEL WITH SAND (GC) - Mottled gray and bro	own,							
-		medium dense, coarse grained sand, slightly moist; granular material consist of andesite and riolite volcanics.	r	SPT	14					
- - 15		CLAYEY SAND (SC) - Mottled gray and brown, medium den coarse grained sand and fine gravel, moist.	ise,							
				мс	17					

- Modified California (MC) blowcounts were adjusted by multiplying field blowcounts by a factor 0.63.
 Ground elevation should be considered approximate. Elevations from Doble Thomas 2011 survey data.
 Backfilled with cement grout immediately upon completion.
 Sampler driving method rope and cathead.
 Groundwater was not encountered.

	A	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710		I	BOF	RINC	g Ni	UMB	ER B-26A-1 PAGE 1 OF 1
	CLIEN PROJ	NT <u>es</u> Iect n	A-PWA PRO UMBER 1110-3A PRO	DJECT NAN	IE <u>Napa Riv</u> ATION Nap	ver Res va, Cali	toratic fornia	on - O\	/OK Rea	ach
S.GPJ	DATE DRILI	STAR	TED _11/26/12 COMPLETED _11/26/12 GRG ONTRACTOR _Northstar Drilling, Inc. GRG ETHOD _Solid Stem Auger GRG	OUND ELEV OUND WAT	ATION <u>118</u> ER LEVELS:	3 ft		HOLE	SIZE _	4.5 in
OK - SITE 2(LOGO	GED BY	Patrick Drumm CHECKED BY KMA	AT END O	OF DRILLING	18 .1	0 ft / E	lev 99).90 ft	
OGS/BORING_LOGS_OV	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NIIMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
APA RIVER OVOKIBORING I	 5		SILTY SAND (SM) - Dark yellowish brown, medium dense, fine grained sand, fines have low plasticity, slightly moist.							
110 - ESA-PWA\1110-3A NA	 10			м	C 25	_				
D PROJECTS/1			- at 11.0': Golden yellow brown, trace micaceous fines.	M M	C 18					
::32 - A:\A3GE(15		SANDY LEAN CLAY (CL) - Brown, firm, fine grained sand, trac micaceous fines, moist. (HARDPAN DEPOSIT)	е М	C 5	1.5	91	29	-	LL: 33
E.GDT - 5/31/13 15			¥						-	PI: 14 Gravel: 0% Sand: 44% Silt: 41% Clay: 15%
O DATA TEMPLATI	<u>20_</u>		SILTY SAND (SM) - Olive brown, loose, fine to medium sand, fines have no plasticity, wet. (HARDPAN DEPOSIT) FAT CLAY WITH SAND (CH) - Dark olive brown, firm, medium coarse grained sand, wet. (HARDPAN DEPOSIT)	to	C 8	0.05	_			
r aligned - A3GE	 		- at 25' : Olive gray and greenish gray, stiff, fine grained sand	м	C 9	1.75	_			
SEOTECH BH COLUMN TERM NOTE LEF	Botto Note: 1. Str 2. Mo 3. Gr 4. Ba 5. Sa	om of b s: ratificat odified ound e ickfilleo impler	orehole at 26.5 feet. ion lines represent the approximate boundaries between material t California (MC) blowcounts were adjusted by multiplying field blowd levation should be considered approximate. Elevations from Doble I with cement grout immediately upon completion. driving method - rope and cathead.	ypes and th counts by a Thomas 20	e transitions factor 0.63.)11 survey da	may b	e grad	ual.		

	Α	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710			E	SOR	INC	έN	JMRI	ER B-26B-1 PAGE 1 OF 1
	CLIEN	NT E	SA-PWA	PROJE	CT NAME	Napa Rive	er Res	toratio	n - 0\	/OK Rea	ch
	PROJ		IUMBER _ 1110-3A	PROJE	CT LOCAT	ION Napa	i, Calif	ornia			
	DATE	STAF	COMPLETED _11/26/12	GROUN		FION 114	ft		HOLE	SIZE 4	.5 in
2	DRILL	ING C	CONTRACTOR Northstar Drilling, Inc.	GROUN	D WATER	LEVELS:					
26.GF	DRILL		IETHOD _Solid Stem Auger	A		DRILLING					
SITE 2	LOGO	SED B	Y Patrick Drumm CHECKED BY KMA	▼ A	F END OF	DRILLING	20.4	0 ft / E	lev 93	6.60 ft	
Х-	NOTE	s		Α	TER DRI	LLING					
LOGS/BORING_LOGS_OV	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
10-3A NAPA RIVER OVOK/BORING I			SILTY SAND (SM) - Dark yellowish brown, medium dense, grained sand, slightly moist; possibly Holocene age. - at 5.5': Fine to medium grained sand, thin 1-1/2 inch long	fine root.	мс	16					
2 - A:\A3GEO PROJECTS\1110 - ESA-PWA\11			SAND WITH SILT (SP-SM) - Yellowish brown, medium der fine to medium grained sand, no plasticity, trace micaceous moist; possibly Holocene age. - at 10.5' to 16.0': 0.1-inch diameter root found through sam	nse, fines, ples.	мс	20					
EMPLATE.GDT - 5/31/13 15:3			SAND (SP) - Yellow and reddish brown, medium dense, fin medium grained sand, moist to wet. ▼ POORLY GRADED GRAVEL WITH SAND (GP) - Dark grav	e to	MC	18					
COTECH BH COLUMN TERM NOTE LEFT ALIGNED - A3GEO DATA T	Botto Notes 1. Str 2. Mc 3. Gr 4. Ba 5. Sa	om of t s: ratifica odified ound e ickfille	medium dense, medium to coarse grained sand, fine graine gravel, subangular to subrounded gravel, wet. borehole at 21.5 feet. tion lines represent the approximate boundaries between mater California (MC) blowcounts were adjusted by multiplying field b elevation should be considered approximate. Elevations from Do d with cement grout immediately upon completion. driving method - rope and cathead.	ial type: lowcour oble Tho	s and the t ts by a fac mas 2011	ransitions r ctor 0.63. survey dat	nay be	e gradi	ual.		

	A	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkelev. CA 94710			E	BOR	RINC	S NI	JMBI	ER B-26C-1 PAGE 1 OF 1
	CLIEN	NT <u>es</u>	SA-PWA PRO		IAME	_Napa Rive	er Res	toratio	n - 0\	/OK Rea	ch
	PROJ	ECT N	UMBER _ 1110-3A PRO	JECT L	OCAT	TION _Napa	a <u>, C</u> alit	fornia			
		STAR	TED 11/26/12 COMPLETED 11/26/12 GRO		EV ⁴	TION 114	ft				4 5 in
	יייפס										
GPJ	UKILL		GRO		AIEF	LEVELS:					
26.0	DRILL		IETHOD Solid Stem Auger		ME OF	F DRILLING					
SITE	LOGO	GED B	Patrick Drumm CHECKED BY KMA	AT EN	ID OF	DRILLING	21.7	0 ft / E	lev 92	.30 ft	
, Ş	NOTE	s		AFTE	r Dri	LLING					
LOGS/BORING_LOGS_0	o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAWFLE ITFE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
- ESA-PWA\1110-3A NAPA RIVER OVOK\BORING	 - 5 - 		SILTY SAND (SM) - Yellowish brown, fine grained sand, mediur dense, fines have no plasticity, slightly moist.	n	MC	18					
GEO PROJECTS/1110 -			- at 10.5': Lightly cemented.		MC	21	-				
A30	 15		WELL GRADED SAND (SW) - Yellowish brown and black, loose	e,							
Ä	15		fine to coarse sand, trace fine gravel, slightly moist.				1				
15:32					MC	9					
A TEMPLATE.GDT - 5/31/13	 - 20 -		POORLY GRADED SAND WITH GRAVEL (SP) - Dark gray, loose, medium to coarse grained sand, fine gravel, slightly mois	t.	МС	4	-				
1 AT											
ALIGNED - A3GEO E			POORLY GRADED GRAVEL WITH SAND (GP) - Olive to dark brown, medium dense, medium to coarse grained sand, fine gravel, few silt, wet.		MC	16	-				
GEOTECH BH COLUMN TERM NOTE LEFT	Botto Notes 1. Str 2. Mc 3. Gr 4. Ba 5. Sa	om of b s: ratifica odified ound e ckfilleo mpler	orehole at 26.5 feet. tion lines represent the approximate boundaries between material ty California (MC) blowcounts were adjusted by multiplying field blowc levation should be considered approximate. Elevations from Doble d with cement grout immediately upon completion. driving method - rope and cathead.	/pes an ounts b Thoma:	d the t y a fa s 201 ⁻	transitions r ctor 0.63. 1 survey da	nay be	e grad	ual.		
1	13	GEO A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				BC	RIN	NG I	NUM	BER B-27-1 PAGE 1 OF 1	
----------------------	--	---	---	--------------------------------------	--	----------------------	-----------------------	-------------------------	-----------------------------	--	
	ENT E	SA-PWA	PROJEC		Napa Rive	er Res	toratic	on - O\	/OK Rea	ach	
PR		NUMBER 1110-3A	PROJEC		ION Napa	a. Calif	fornia				
DA	TE STAF	COMPLETED 1/22/13	GROUNE	ELEVA	TION 124	ft		HOLE		4.5 in	
	ILLING C	CONTRACTOR Northstar Drilling, Inc.	GROUNE	WATER	LEVELS:	-					
	ILLING N	IETHOD Solid Stem Auger	AT	TIME OF							
	GGED B	Y Patrick Drumm CHECKED BY KMA	АТ	END OF	DRILLING						
× × NO	TES			TER DRI	LLING 17.	00 ft /	Elev	107.00) ft		
DEPTH	(II) GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES	
		LEAN CLAY (CL) - Dark brown, firm, little fine sand, moist; possibly Holocene age.		мс	8						
0JECIS/1110 - ESA-FW	 	SILTY SAND (SM) - Dark brown, medium dense, fine graine sand, moist; poorly consolidated. - At 11.5': Encountered small gravel and charcoal fragments during drilling.	ed s	мс	13						
6 - A:W3GEO PR		WELL GRADED GRAVEL WITH SAND (GW) - Mottled gra brown, medium dense, trace clay, moist.	ly and								
		CLAYEY SAND WITH GRAVEL (SC) - Mottled gray and brown dense to very dense, medium to coarse grained sand, mois	own, st.	MC SPT	52/11"					- At 20': Excessive caving caused use of bentonite to seal area in order to continue drilling and sampling.	
	ttom of t tes: Stratifica Modified Ground c Caving c SPT Sar Backfille Groundw	porehole at 26.4 feet. tion lines represent approximate boundaries betweeen material California (MC) blowcounts were adjusted by multiplying field b elevation should be considered approximate. Elevations from Do bserved below a depth of 20 feet. nple attempted at 20' - 21.5' but excessive carving caused inacc d with cement grout 15 minutes after completion. vater reading taken 10 minutes after completion of boring.	types an lowcount oble Thor curate blo	d transiti s by a fac mas 2011	ons may be ctor of 0.63 I survey da readings.	e gradı	l ual.	<u> </u>			

	A 2	A3GEO, Inc.				BO	RIN	IG N	IUM	3ER B-28-1 PAGE 1 OF 1
	AJ	Berkeley, CA 94710								
	CLIENT ES	SA-PWA	PROJEC	T NAME	Napa Rive	er Rest	toratio	<u>n - OV</u>	OK Rea	ch
	PROJECT N	IUMBER 1110-3A TED 11/26/12			ION <u>Napa</u>	i, Calif ft	ornia		SIZE /	
,	DRILLING C	CONTRACTOR Northstar Drilling, Inc.	GROUN		LEVELS:			HOLL	512E <u>4</u>	
10.02		IETHOD Solid Stem Auger	AT		DRILLING					
	LOGGED BY	Y Patrick Drumm CHECKED BYKMA	▼ A1	END OF	DRILLING	19.40	Oft/E	lev 10	5.60 ft	
			AF	TER DRII	LLING			,		
	DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
		SILTY SAND (SM) - Dark yellowish brown, fine to medium sand, medium dense, slightly moist.	grained							
20-	<u>1</u> 1212	- At 5.5': 0.3 inch diameter root found in sampler.		мс	19					
		WELL GRADED SAND WITH SILT AND GRAVEL (SW-SI Dark gray, medium dense, fine to coarse grained sand, fine fines have no plasticity, slightly moist.	M) - e gravel,							
				мс	14					
	 20	POORLY GRADED SAND WITH CLAY AND GRAVEL (SF Olive brown, medium dense, fine to coarse grained sand, f gravel, low plasticity fines, moist.	P-SC) - ine	мс	11					
		POORLY GRADED SAND WITH GRAVEL (SP) - Dark gra medium dense, fine to coarse grained sand, fine to coarse (rejunded to subrounded) trace silt moiet	iy, gravel	мс	20					
	Bottom of b Notes:	orehole at 21.5 feet.	/=							
לטם מם טטבטואווא ובהואו ואטיוב בבריו אבוטואנע - מטכרט	Notes: 1. Stratifica 2. Modified 3. Ground e 4. Backfilled	tion lines represent the approximate boundaries between mate California (MC) blowcounts were adjusted by multiplying field t elevation should be considered approximate. Elevations from D d with cement grout upon completion of drilling.	rial types blowcoun oble Tho	and the t ts by a fac mas 2011	ransitions r ctor 0.63. survey dat	nay be	e gradı	Jal.		

Α	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				BO	RIN	ig r		PAGE 1 OF 1
CLIEI	NT ES	SA-PWA P	PROJECT	NAME	Napa Rive	er Res	toratio	n - OV	/OK Rea	ich
DPO		LIMBER 1110-3A			ION Nana	n Calif	iornia		0	
						i, Udill ri	UTIId			
DATE	STAR	IED 11/2//12 COMPLETED 11/27/12 G	GROUND	ELEVA	124 124	rt		HOLE	SIZE _	1.5 IN
	LING C	ONTRACTOR Northstar Drilling, Inc. G	GROUND	WATER	LEVELS:					
	LING M	ETHOD Solid Stem Auger	AT	TIME OF	DRILLING					
LOG	GED B	Patrick Drumm CHECKED BY KMA	AT I	END OF	DRILLING					
	ES		AFT	ER DRI	LLING					
	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
		SILTY SAND (SM) - Yellowish brown, fine grained sand, mea dense, fines have no plasticity, slightly moist; possibly Holoc age.	edium cene							
; ;		SANDY LEAN CLAY (CL) - Very dark gray, very stiff to hard.	l. fine	мс	19	> 4.5				
 		grained sand, slightly moist. (HARDPAN DEPOSIT)	,,							
 		SILTY SAND (SM) - Light yellowish brown, little fine grained gravel, very dense, slightly moist. (HARDPAN DEPOSIT)		▲ <u>MC</u>	32/4"					
15		- At 14' : Mottled light brownish gray and brown, lightly ceme	ented.							
			•	MC	32/3"		100	23		LL: 28
		SILTY SAND WITH GRAVEL (SM) - Yellowish brown, fine to coarse grained sand, little gravel, very dense, slightly moist t moist.	o to							PI: 0 Gravel: 22% Sand: 64% Silt: 7% Clay: 7%
		SANDY GRAVEL WITH CLAY (GP) - Mottled yellowish brow dark brown, medium to coarse grained sand, fine gravel, der	wn and nse,	мс	37					
 		- At 21': Some maroon-red colored gravel.								
25		CLAYEY SAND (SC) - Grayish brown, very dense, fine to co grained sand, trace fine gravel, slightly moist. (HARDPAN DEPOSIT)	oarse		<u>32/5"</u> 50/5"		108			LL: 33 Pl: 11
Botto Note 1. St 2. Mo 3. Gr 4. Gr 5. Ba 6. Sa	om of b ratificat odified round e round w ackfilled ample c	orehole at 26.0 feet. tion lines represent the approximate boundaries between materia California (MC) blowcounts were adjusted by multiplying field blo levation should be considered approximate. Elevations from Dol vater not encountered. I with cement grout immediately upon completion. Iriving method - rope and cathead.	ial types a owcounts oble Thom	and the t by a fac as 2011	ransitions r ctor 0.63. survey dat	nay be	e gradi	ual.		Gravel: 3% Sand: 61% Silt: 15% Clay: 21%

	Α	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710				BO	RIN	IG I	NUMI	BER B-29-2 PAGE 1 OF 1
	CLIEN	IT ES	A-PWAI	PROJEC	T NAME	Napa Rive	er Res	toratio	n - OV	/OK Rea	ch
	PROJ	ECT N	UMBER I 110-3A I	PROJEC		ION Napa	i, Calif	ornia			
	DATE	STAR	TED <u>11/27/12</u> COMPLETED <u>11/27/12</u>	GROUNI	D ELEVA	FION 123	ft		HOLE	SIZE 4	l.5 in
2	DRILL	ING C	ONTRACTOR Northstar Drilling, Inc.	GROUNI	WATER	LEVELS:					
D.Y.G	DRILL	ING M	ETHOD Solid Stem Auger	AT		DRILLING					
ЦEИ	LOGG	ED BY	Patrick Drumm CHECKED BY KMA		END OF	DRILLING	23.5) ft / F	lev 99	50 ft	
ה - צ	NOTE	s		_ ΛΠ			20.0			.00 11	
		<u> </u>		~					1		
	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
KIVER UVUNBURING L	 		SANDY LEAN CLAY (CL) - Brown, very stiff, fine grained sa medium plasticity fines, lightly cemented, slightly moist.	ind,							
AFA	_ 5 _										
/A/1710-3A N					мс	25					
NT 110 - ESA-PW	 _ 10 _		CLAYEY SAND (SC) - Mottled light brown and dark brown, stiff to hard, fine to coarse grained sand, high plasticity fines slightly moist; possibly paleosol.	very S,	MC	32/5"	> 4.5				
			 - At 11': less clay more gravel. FAT CLAY WITH SAND (CH) - Light grayish brown, hard, fin coarse grained sand, few fine grained gravel, slightly moist; possibly volcanic tuff. 	ne to							
- A: A	15										
/7:G			SILT WITH SAND (ML) - Mottled bluish grav and rusty red.	verv	МС	44	> 4.5				
GUI - 5/31/13			dense fine grained sand, slightly moist. CLAYEY SAND WITH GRAVEL (SC) - Mottled gray and yel brown, medium dense, coarse grained sand, fine to coarse gravel, moist to wet.	lowish							
μ	20	$ \rangle$									
JAIA IEMPL			- At 21.5' : Coarse subrounded gravel up to 1.5 inches in dia	meter.	мс	24					
U - A3GEUI	 25		Ţ								
ENE GNE			POORLY GRADED SAND WITH GRAVEL (SP-SM) - Dark	gray,	МС	32/5"					
- F			gravel, little non-plastic silt, moist.								
UT BH CULUMIN IERM NUTE LEF	Botto Notes 1. Str 2. Mc 3. Gro 4. Ba 5. Sa	m of b s: atificat dified bund e ckfillec mple d	orehole at 25.9 feet. ion lines represent the approximate boundaries between mater California (MC) blowcounts were adjusted by multiplying field bl levation should be considered approximate. Elevations from Go I with cement grout immediately upon completion. Iriving method - rope and cathead.	ial types owcount oogle Ea	and the t s by a fac rth and D	ransitions r ctor 0.63. oble Thoma	nay be as 201	e gradı 1 surv	ual. /ey dat	ta.	

Α	3	G = O A3GEO, Inc. 1331 Seventh St., Unit E Berkeley, CA 94710								PAGE 1 OF 1
CLIE	NT ES	A-PWA PRC	DJECT N	AME	Napa Rive	er Res	toratic	on - O\	/OK Rea	ich
PROJ	ECT N	UMBER 1110-3A PRO	DJECT L	OCAT	FION Napa	a, Calif	ornia			
	STAR	TED 11/27/12 COMPLETED 11/27/12 GR0	ound ei	EVA	TION 121	ft		HOLE	SIZE 4	I.5 in
	ING C	ONTRACTOR Northstar Drilling Inc. GRO		ATER						
		ETHOD Solid Stem Auger				·				
NOTE	S		AFTER	r Dri	LLING					
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		NUMBER	ADJUSTED BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ROCK RECOVERY % (RQD)	OTHER LAB TESTS / NOTES
 		SILTY SAND (SM) - Dark reddish brown, medium dense, fine grained sand, slightly moist.								
L.			- M	MC	16	> 4.5				
 _ 10		 - At 6': Trace fine subrounded coarse gravels. CLAYEY SAND (SC) - Dark brown, medium dense, fine to medium grained sand, trace fine gravel, low plasticity fines, slig moist. 	Ihtly							
L			M	MC	21					
 _ 15		CLAYEY SAND WITH GRAVEL (SC) - Dark brown, medium dense, fine to coarse grained sand, fine gravel, slightly moist.				-				
L.			M	MC	28					
		WELL GRADED SAND WITH SILTY CLAY (SW-SC) - Yellowis brown, few fine angular to subrounded gravel, fine to coarse gra sand, slightly moist.	sh avel							
20		and grayish brown, dense, fine to coarse grained sand, fine gra moist to wet.	vn ivel,	MC	40	-				
 		- At 21.0' to 21.5' : No fine to medium grained sand.								
<u></u>	ी।	- POORLY GRADED SAND WITH GRAVEL AND SILT (SP-SM)	🗖	MC	32/6"	<u> </u>				
		Yellowish brown, very dense, fine to coarse grained sand, fine								
Dott-	moth	Lyraver, moist to wet.								
Note	111 OF DO S:									
1. St	ratificat	ion lines represent the approximate boundaries between material t	ypes and	the factor	transitions r	nay be	e grad	ual.		
2. ₩0 3. Gr	ound e	levation should be considered approximate. Elevations from Doble	Thomas	y a la 2011	1 survey da	ta.				
4. Gr	ound w	rater not encountered.			,					
5. Ba	icktilled	i with cement grout immediately upon completion. riving method - rope and cathead.								
		g								

Appendix B

Laboratory Test Data

	<u>29 Suga</u>	B rloaf T	• H	ILL , Alamo	ΈΒ 5, ca s	RA 94507 -	ND Tel: (5	TS	OI] -2916 -	LS ' - Fax: (TES (925) 89	STI 91-9267	NG - Ema	, IN	C. esting@aol.com
						<u>LAB</u>	RESU	UTS S	UMM	ARY	FORM	<u>1</u>			
Project Reques	Number: ted By:		1110-3 DM	A	Pro Re	oject N quest I	ame: Date:	Napa 12/7/1:	River C 2	VOK				Result Throw	s Due By: Samples Out On:
				sf)	A	tterbe	rg		-200		Comp	action			
Boring #	Sample Depth (feet)	Dry Density (pcf)	Moisture Content (%)	Unconfined Compressive (k	Liquid Limit	Plastic Limit	Plasicity Index	Passing #4 Sieve (%)	Passing #40 sieve (%)	Passing #200 sieve (%)	Maximum Dry Density (pcf)	Optimum Moisture (%)	Pocket Penetrometer (tsf)	Torvane (tsf)	Remarks
B7-1	6.0 - 6.5	111	16		41	19	22	100	98	71					
B7-1	10.5 - 11.0	100	22		34	17	17	100	99	60					
B18-1	21.0 - 21.5	95	28		51	25	26	100	98	93					
B22-1	21.0 - 21.5	83	39		51	24	27	100	100	97					
B26-A-1	15.5 - 16.0	91	29		33	19	14	100	99	56					
Bulk riv	/er site 17		18		32	22	10	96	67	35					
┣───															

B. HILLEBRANDT SOILS TESTING, INC.

29 Sugarloaf Terrace, Alamo, CA 94507 - Tel: (510) 409-2916 - Fax: (925) 891-9267 - Email: soiltesting@aol.com

MOISTURE CONTENT/DRY DENSITY

Job #: 1110-3A Job Name: Napa River OVOK Date: 12/7/12 Tested by: Brad Hillebrandt

Additional Tests:	PI, FS, Hyd	PI, FS, Hyd	PI, FS, Hyd	PI, FS, Hyd	PI, FS, Hyd	
Boring #:	B7-1	B7-1	B18-1	B-22-1	B26-A-1	
Depth (feet):	6.0 - 6.5	10.5 - 11.0	21.0 - 21.5	21.0 - 21.5	15.5 - 16.0	
Sample Description:	Brown lean CLAY with sand	Brown sandy lean CLAY	Brown fat CLAY	Olive brown fat CLAY	Grayish brown sandy lean CLAY	
Can #:	352	351	310	354	309	
Wet Sample + can	406.5	428.4	393.7	388.3	384.4	
Dry Sample + can	354.9	356.8	315.9	289.5	307.6	
Weight can	33.8	33.8	37.9	33.8	37.7	
Weight water	51.6	71.6	77.8	98.8	76.8	
Weight Dry Sample	321.1	323	278	255.7	269.9	
WATER CONTENT (%)	16.1%	22.2%	28.0%	38.6%	28.5%	
Weight Sample + Liner	1105	1118	1071	990	1001	
Weight Liner	258	254	250	258	268	
Sample Length (Lo)	5.425	5.85	5.625	5.3	5.2	
Multiplication Factor	1.21	1.21	1.21	1.21	1.21	
DRY DENSITY (pcf)	111.4	100.2	94.5	82.5	90.9	

B. HILLEBRANDT SOILS TESTING, INC.

29 Sugarloaf Terrace, Alamo, CA 94507 - Tel: (510) 409-2916 - Fax: (925) 891-9267 - Email: soiltesting@aol.com

MOISTURE CONTENT WORKSHEET

1110-3A Job #: Job Name: Napa River OVOK Date: 12/7/12 Tested by: B. Hillebrandt Additional Tests: PI, FS, Hyd Boring #: Bulk Site 17 Depth (feet): Brown clayey Sample Description: SAND Can #: 330 Wet Sample + can 259.4 Dry Sample + can 226.1 Weight can 38.4 Weight water 33.3 Weight Dry Sample 187.7 WATER CONTENT (%) 17.7%

Client: A3Geo Project: Napa River OVOK Project Number: 1110-3A Location: B7-1 Depth: 6.0 - 6.5' Material Description: Brown lean CLAY with sand USCS: CL Tested by: BH

60.00

250.00

1440.00

20.8

21.5

19.5

1.0230

1.0195

1.0160

1.0200

1.0165

1.0123

			Ś	Sieve Tes	st Data				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sie Weig (gran	ve ght ms)	Percent Finer			
354.90	33.80	1"	0.00	(0.00	100.0			
		#4	31.00	3	1.00	100.0			
		#10	31.20	3	1.00	99.9			
		#40	37.50	3	1.00	97.9			
		#200	118.80	3	1.00	70.6			
			Hyd	rometer	Test Da	ata			
Hydrometer tes Percent passin Weight of hydr Table of compo Temp., deg. Comp. corr.: Meniscus corre Specific gravit Hydrometer tyj Hydrometer	st uses materia ig #10 based u ometer sample osite correctio C: 20 . -3. ection only = 0 y of solids = 2 be = $151H$ effective dept	al passing #10 pon complete e =69.29 n values: 1 21. 0 -3. 0.5 .7 h equation: L =) sample = 99. 2 19 0 -4 = 16.294964 -	9 .3 .0 0.2645 x	21.7 -3.0 Rm	18. -4.	5		
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
2.00	20.1	1.0315	1.0285	0.0134	32.0	7.8	0.0266	65.3	
5.00	20.1	1.0295	1.0265	0.0134	30.0	8.4	0.0174	60.7	
15.00	20.3	1.0270	1.0240	0.0134	27.5	9.0	0.0104	55.0	
30.00	20.3	1.0250	1.0220	0.0134	25.5	9.6	0.0076	50.4	

0.0133

0.0132

0.0135

23.5

20.0

16.5

10.1

11.0

11.9

0.0055

0.0028

0.0012

45.8

37.8

28.1

_ B. Hillebrandt Soils Testing, Inc. _

				Fractional C	components	\$			
Cobb	les	Gra	avel	Sa	nd	s	ilt	CI	ау
0.0		0	.0	29	0.4	25	5.9	44	1.7
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0014	0.0074	0.0163	0.1442	0.1888	0.2476	0.3367
Fineness Modulus									
0.28									
			R LIII	ohrandt G	nile Taetin	a Inc			

Client: A3Geo Project: Napa River OVOK Project Number: 1110-3A Location: B7-1 Depth: 10.5 - 11.0' Material Description: Brown sandy lean CLAY USCS: CL Tested by: BH

				Sieve Te	st Data				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sie J We (gra	eve ight ims)	Percent Finer			
356.80	33.80	1"	0.00	C	0.00	100.0			
		#4	31.00	0 3	31.00	100.0			
		#40	36.00	0 3	31.00	98.5			
		#200	156.40	0 3	31.00	59.6			
			Hy	drometer	Test Da	ata			
Percent passin Weight of hydr Table of compo Temp., deg. Comp. corr.: Meniscus corre Specific gravity Hydrometer typ Hydrometer	g #10 based i ometer samp posite correction C: 200 -3 ection only = 0 y of solids = 2 be = $151H$ effective dept	air passing #10 upon complete le =73.06 on values: .1 21. .0 -3. 0.5 2.7 ch equation: L =	sample = 10 2 19 0 -4 = 16.294964	00.0 9.3 4.0 - 0.2645 >	21.7 -3.0	18. -4.	6)		
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
2.00	20.1	1.0275	1.0245	0.0134	28.0	8.9	0.0283	53.3	
5.00	20.1	1.0250	1.0220	0.0134	25.5	9.6	0.0186	47.8	
15.00	20.3	1.0220	1.0190	0.0134	22.5	10.3	0.0111	41.3	
30.00	20.3	1.0210	1.0180	0.0134	21.5	10.6	0.0080	39.1	
60.00	20.8	1.0190	1.0160	0.0133	19.5	11.1	0.0057	34.8	
250.00	21.5	1.0160	1.0130	0.0132	16.5	11.9	0.0029	28.3	
1440.00	19.5	1.0132	1.0095	0.0135	13.8	12.7	0.0013	20.7	

Cobbles 0.0 D10 C	D ₁₅ D ₂₀	Grav 0.0	/el) D30 0.0036	Sa 40 D50 0.0216	nd).4 D60 0.0772	5 26 0.1927	ilt 5.5 D85 0.2333	CI 33 D90 0.2846	lay 3.1 D95 0.3548
0.0 D10 E Fineness Modulus 0.37	D ₁₅ D ₂₀	0.0 0) D30 0.0036	D 50 0.0216	0.4 D 60 0.0772	26 D80 0.1927	5.5 D 85 0.2333	33 D90 0.2846	3.1 D95 0.3548
D ₁₀ E Fineness Modulus 0.37	D ₁₅ D ₂ (0	D 30 0.0036	D 50 0.0216	D ₆₀ 0.0772	D 80 0.1927	D 85 0.2333	D 90 0.2846	D 95 0.3548
D ₁₀ E Fineness Modulus 0.37	D ₁₅ D ₂ (0	P 30 0.0036	D 50 0.0216	D ₆₀ 0.0772	D ₈₀ 0.1927	D ₈₅ 0.2333	D 90 0.2846	D 95 0.3548
Fineness Modulus 0.37			0.0036	0.0216	0.0772	0.1927	0.2333	0.2846	0.3548
Fineness Modulus 0.37									
0.37									

Client: A3Geo Project: Napa River OVOK Project Number: 1110-3A Location: B18-1 Depth: 21.0 - 21.5' Material Description: Brown fat CLAY USCS: CH Tested by: BH

1440.00

19.5

1.0135

1.0097

Tested by: BF	1								
				Sieve Te	st Data				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retainec (grams)	Sie I Wei (grai	ve ght ms)	Percent Finer			
315.90	37.90	1"	31.00) 3	1.00	100.0			
		#4	31.00) 3	1.00	100.0			
		#10	31.70) 3	1.00	99.7			
		#40	36.20) 3	1.00	97.9			
		#200	43.70) 3	1.00	93.3			
			Нус	drometer	Test Da	ata			
Hydrometer tes Percent passin Weight of hydro Table of compo Temp., deg. (Comp. corr.: Meniscus corre Specific gravity Hydrometer typ Hydrometer of	t uses mater g #10 based to ometer sample posite correction C: 20 -3 ection only = 0 y of solids = 2 be = 151H effective dept	al passing #10 upon complete e = 61.19 on values: .1 21. .0 -3. 0.5 7 h equation: L =	sample = 99 2 19 0 -4 = 16.294964	.7 9.3 4.0 - 0.2645 x	21.7 -3.0 Rm	18.0 -4.0	5)		
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
2.00	20.1	1.0330	1.0300	0.0134	33.5	7.4	0.0259	77.7	
5.00	20.1	1.0310	1.0280	0.0134	31.5	8.0	0.0169	72.5	
15.00	20.3	1.0280	1.0250	0.0134	28.5	8.8	0.0102	64.7	
30.00	20.3	1.0255	1.0225	0.0134	26.0	9.4	0.0075	58.3	
60.00	20.8	1.0230	1.0200	0.0133	23.5	10.1	0.0055	51.8	
250.00	21.5	1.0180	1.0150	0.0132	18.5	11.4	0.0028	38.8	

0.0135

14.0

12.6

0.0013

25.2

				Fractional C	Component	S			
Cob	bles	Gra	avel	Sa	ind	s	ilt	C	ay
0	0.0	0	.0	6	.7	43	3.3	50).0
		1					1		·
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0017	0.0050	0.0081	0.0305	0.0419	0.0580	0.1282
Fineness]								
0.10	-								
	-								
			B. Hill	ebrandt Se	oils Testin	ıg, Inc			

Client: A3Geo Project: Napa River OVOK Project Number: 1110-3A Location: B22-1 Depth: 21.0 - 21.5' Material Description: Olive brown fat CLAY USCS: CH Tested by: BH

Tested by. Dr	1				_				
				Sieve Te	st Data				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sie Wei (gra	ve ght ms)	Percent Finer			
289.50	33.80	1'	0.00)	0.00	100.0			
		#4	31.00) 3	1.00	100.0			
		#40	32.10) 3	1.00	99.6			
		#200	36.90) 3	1.00	97.3			
			Hy	drometer	Test Da	ata			
Percent passing Weight of hydro Table of compo Temp., deg. (Comp. corr.: Meniscus corre Specific gravity Hydrometer typ Hydrometer of	to uses mater g #10 based to poneter samp posite correction 2: 200 -3 action only = 0 of solids = 2 e = 151H effective dept	1ai passing #1 upon complete le = 66.32 on values: .1 21 .0 -3 0.5 2.7 th equation: L	a sample = 10 .2 19 .0 -4 = 16.294964	0.0 9.3 4.0 - 0.2645 x	21.7 -3.0 Rm	18. -4.	6 0		
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
2.00	20.3	1.0165	1.0135	0.0134	17.0	11.8	0.0325	32.3	
5.00	20.3	1.0150	1.0120	0.0134	15.5	12.2	0.0209	28.7	
15.00	20.3	1.0132	1.0103	0.0134	13.8	12.7	0.0123	24.5	
30.00	20.5	1.0123	1.0092	0.0134	12.8	12.9	0.0088	22.2	
60.00	20.7	1.0103	1.0072	0.0133	10.8	13.5	0.0063	17.4	
250.00	21.5	1.0090	1.0060	0.0132	9.5	13.8	0.0031	14.4	
1440.00	20.5	1.0070	1.0040	0.0134	7.5	14.3	0.0013	9.6	

Cobbles Gravel Sand Silt Clay 0.0 0.0 2.7 81.9 15.4 P10 P15 P20 P30 P50 P60 P80 P85 P90 P95 0.014 0.0045 0.0075 0.0245 0.0434 0.0487 0.0607 0.0642 0.0682 0.0727 Fineness Cu Cc Cu Cc Cu Cu <th< th=""><th>Cobbles Gravel 0.0 0.0 D10 D15 D20 D30 0.0014 0.0045 0.0075 0.0245 ineness Cu Cc Common State Common State 0.03 34.58 8.71 0.03</th><th>Cobl</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Cobbles Gravel 0.0 0.0 D10 D15 D20 D30 0.0014 0.0045 0.0075 0.0245 ineness Cu Cc Common State Common State 0.03 34.58 8.71 0.03	Cobl									
0.0 0.0 2.7 81.9 15.4 D10 D15 D20 D30 D50 D60 D80 D85 D90 D95 0.0014 0.0045 0.0075 0.0245 0.0434 0.0487 0.0607 0.0642 0.0682 0.0727 Tineness Modulus Cu Cc 0.03 34.58 8.71	0.0 0.0 D10 D15 D20 D30 0.0014 0.0045 0.0075 0.0245 ineness Cu Cc Cu Cu <th< th=""><th></th><th>bles</th><th>Gra</th><th>ivel</th><th>Sa</th><th>Ind</th><th>S</th><th>ilt</th><th>CI</th><th>ау</th></th<>		bles	Gra	ivel	Sa	Ind	S	ilt	CI	ау
D10 D15 D20 D30 D50 D60 D80 D85 D90 D95 0.0014 0.0045 0.0075 0.0245 0.0434 0.0487 0.0607 0.0642 0.0682 0.0727 Fineness Modulus Cu Cc 0.03 34.58 8.71 0.03 0.03 0.0458 0.0434 0.0487 0.0607 0.0642 0.0682 0.0727	D10 D15 D20 D30 0.0014 0.0045 0.0075 0.0245 ineness Modulus Cu Cc Cu 0.03 34.58 8.71 0.00000000000000000000000000000000000	0.	0	0.	.0	2	.7	81	.9	15.4	
D10 D15 D20 D30 D50 D60 D80 D85 D90 D95 0.0014 0.0045 0.0075 0.0245 0.0434 0.0487 0.0607 0.0642 0.0682 0.0727 Fineness Modulus Cu Cc 0.03 34.58 8.71 0.03 0.03 0.0458 0.0434 0.0487 0.0607 0.0642 0.0682 0.0727	D10 D15 D20 D30 0.0014 0.0045 0.0075 0.0245 ineness Modulus Cu Cc 0.03 34.58 8.71										
0.0014 0.0045 0.0075 0.0245 0.0434 0.0487 0.0607 0.0642 0.0682 0.0727	0.0014 0.0045 0.0075 0.0245 ineness Modulus Cu Cc Cc 0.03 34.58 8.71 34.58 34.58 34.51	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
Fineness ModulusCuCc0.0334.588.71	ineness ModulusCuCc0.0334.588.71	0.0014	0.0045	0.0075	0.0245	0.0434	0.0487	0.0607	0.0642	0.0682	0.0727
0.03 34.58 8.71	0.03 34.58 8.71	Fineness	Cu	Cc							
		0.03	34.58	8.71							

Client: A3Geo Project: Napa River OVOK Project Number: 1110-3A Location: B26-A-1 Depth: 15.5 - 16.0' Material Description: Grayish brown sandy lean CLAY USCS: CL Tested by: BH

				Sleve le	st Data				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Openin Size	Weight g Retaine (grams	t Sie d We) (gra	eve ight ims)	Percent Finer			
307.60	37.70	1	" 0.0	0	0.00	100.0			
		#	4 31.0	0 3	31.00	100.0			
		#4	0 33.5	0 3	31.00	99.1			
		#20	0 147.7	0 3	31.00	55.8			
			Hy	drometer	· Test Da	ata			
Hydrometer tes Percent passin Weight of hydr Table of compo Temp., deg. Comp. corr.: Meniscus corre Specific gravity Hydrometer typ Hydrometer	st uses materi g #10 based u ometer sampl posite correctic C: 20 -3 ection only = (y of solids = 2 be = $151H$ effective dept	ial passing # upon complet le =91.56 on values: .1 2 .0 - .5 .7 h equation: L	10 e sample = 1 1.2 1 3.0 - . = 16.294964	00.0 9.3 4.0	21.7 -3.0	18. -4.	6 0		
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
2.00	20.3	1.0175	1.0145	0.0134	18.0	11.5	0.0322	25.2	
5.00	20.3	1.0155	1.0125	0.0134	16.0	12.1	0.0208	21.7	
15.00	20.3	1.0143	1.0112	0.0134	14.8	12.4	0.0122	19.5	
30.00	20.5	1.0132	1.0103	0.0134	13.8	12.7	0.0087	17.8	
60.00	20.7	1.0123	1.0092	0.0133	12.8	12.9	0.0062	16.0	
250.00	21.5	1.0105	1.0075	0.0132	11.0	13.4	0.0031	13.0	
1440.00	20.5	1.0085	1.0055	0.0134	9.0	13.9	0.0013	9.5	

B. Hillebrandt Soils Testing, Inc.

Client: A3Geo **Project:** Napa River OVOK Project Number: 1110-3A **Location:** Bulk Sample from River - Site 17 Sample Number: 1 Material Description: Brown clayey SAND USCS: SC

Tested by: BH

				Sieve Tes	st Data				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sie d Wei (grai	ve ght ms)	Percent Finer			
226.10	38.40	1'	. 0.0	0	0.00	100.0			
		#4	38.2	0 3	1.00	96.2			
		#10	50.1	0 3	1.00	86.0			
		#4() 67.0	0 3	1.00	66.8			
		#200) 91.3	0 3	1.00	34.7			
			Ну	drometer	Test Da	ata			
Percent passin Weight of hydr Table of compo Temp., deg. Comp. corr.: Meniscus corre Specific gravity Hydrometer typ Hydrometer typ	g #10 based of ometer samp posite correctic C: 20 -3 ection only = (y of solids = 2 be = 151H effective dept	upon complete upon complete le =91.08 on values: .1 21 .0 -3 0.5 7 h equation: L	e sample = 86 .2 1 .0 = 16.294964	5.0 9.3 4.0 - 0.2645 x	21.7 -3.0	18. -4.	6 0		
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
2.00	20.3	1.0245	1.0215	0.0134	25.0	9.7	0.0295	32.2	
5.00	20.3	1.0230	1.0200	0.0134	23.5	10.1	0.0190	30.0	
15.00	20.3	1.0195	1.0165	0.0134	20.0	11.0	0.0115	24.7	
30.00	20.5	1.0170	1.0140	0.0134	17.5	11.7	0.0083	21.0	
60.00	20.7	1.0150	1.0120	0.0133	15.5	12.2	0.0060	18.0	
250.00	21.5	1.0115	1.0085	0.0132	12.0	13.1	0.0030	12.7	
1440.00	20.5	1.0090	1.0060	0.0134	9.5	13.8	0.0013	9.0	

			I	Fractional C	Component	S			
Cobl	oles	Gra	avel	Sa	Ind	s	ilt	CI	ay
0.	0	3	.8	6	1.5	18	3.2	16	5.5
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0017	0.0042	0.0075	0.0190	0.1898	0.3007	1.1564	1.8373	2.7615	4.2158
Fineness Modulus	Cu	Cc							
1.61	175.47	0.70							

B. HILLEBRANDT SOILS TESTING, INC. 29 Sugarloaf Terrace, Alamo, CA 94507 - Tel: (510) 409-2916 - Fax: (925) 891-9267 - Email: soiltesting@aol.com

LAB RESULTS SUMMARY FORM

Project Reques	Number: ted By:		1110-3/ DM	A	Pro Re	oject N quest I	ame: Date:	Napa F 12/15/*	River R 12	estora	tion - C	OVOK #	2	Result Throw	s Due By: Samples Out On:
				if)	A	tterber	g		-200		Comp	action			
Boring #	Sample Depth (feet)	Dry Density (pcf)	Moisture Content (%)	Unconfined Compressive (ks	Liquid Limit	Plastic Limit	Plasicity Index	Passing #4 Sieve (%)	Passing #40 sieve (%)	Passing #200 sieve (%)	Maximum Dry Density (pcf)	Optimum Moisture (%)	Pocket Penetrometer (tsf)	Torvane (tsf)	Remarks
D 17 4	11 0 11 5	101	20		50	21	20	100	00	01					
B-17-4	155-160	101	20		30 35	21	29 12	95	90 56	28					
D-17-4	13.3 - 10.0	100	23		35	23	12	35	30	20					
B-17-5	6.0 - 6.5	114	11		41	19	22	85	66	46					
B-17-5	10.5 - 11.0	109	15		42	18	24	92	65	40					
5 (5 6							4.0	100							
B-17-6	21.0 - 21.5	94	29		45	27	18	100	94	83					
B-17-7	21.0 - 21.5	91	31		45	23	22	99	87	73					
B-29-1	15.5 - 16.0	100	23		28	30	NP	78	38	14					
B-29-1	25.0 - 25.4	108	18		33	22	11	96	58	36					

B. HILLEBRANDT SOILS TESTING, INC.

29 Sugarloaf Terrace, Alamo, CA 94507 - Tel: (510) 409-2916 - Fax: (925) 891-9267 - Email: soiltesting@aol.com

MOISTURE CONTENT/DRY DENSITY

Job #: 1110-3A Job Name: Napa River Restoration - OVOK #2 Date: 12/15/12 Tested by: Brad Hillebrandt

Additional Tests:	PI, -200, Hyd.	PI, -200, Hyd.	PI, -200, Hyd.	PI, -200, Hyd.	PI, -200, Hyd.	PI, -200, Hyd.
Boring #:	B-17-4	B-17-4	B-17-5	B-17-5	B-17-6	B-17-7
Depth (feet):	11.0 - 11.5	15.5 - 16.0	6.0 - 6.5	10.5 - 11.0	21.0 - 21.5	21.0 - 21.5
Sample Description:	Brown fat CLAY	Olive brown clayey SAND	Brown clayey SAND with gravel	Grayish brown clayey SAND	Brown lean CLAY with sand	Brownish gray lean CLAY with sand
Can #:	368	365	B-14	B-20	364	361
Wet Sample + can	316.0	412.9	737.7	774.7	320.5	323.1
Dry Sample + can	269.7	341.7	686.8	710.3	256.8	254.3
Weight can	35.7	34.2	230.2	271.4	34.0	33.6
Weight water	46.3	71.2	50.9	64.4	63.7	68.8
Weight Dry Sample	234	307.5	456.6	438.9	222.8	220.7
WATER CONTENT (%)	19.8%	23.2%	11.1%	14.7%	28.6%	31.2%
Weight Sample + Liner	1074	1094	1170	1135	1082	1114
Weight Liner	248	258	253	262	254	253
Sample Length (Lo)	5.675	5.65	6.0	5.8	5.7	6.0
Multiplication Factor	1.21	1.21	1.21	1.21	1.21	1.21
DRY DENSITY (pcf)	100.7	99.5	113.9	108.7	93.6	90.6

B. HILLEBRANDT SOILS TESTING, INC.

29 Sugarloaf Terrace, Alamo, CA 94507 - Tel: (510) 409-2916 - Fax: (925) 891-9267 - Email: soiltesting@aol.com

MOISTURE CONTENT/DRY DENSITY

Job #: 1110-3A Job Name: Napa River Restoration - OVOK #2 Date: 12/15/12 Tested by: Brad Hillebrandt

Additional Tests:	PI, -200, Hyd.	PI, -200, Hyd.		
Boring #:	B-29-1	B-29-1		
Depth (feet):	15.5 - 16.0	25.0 - 25.4		
Sample Description:	Olive gray silty SAND with gravel	Olive brown to olive gray clayey SAND		
Can #:	362	367		
Wet Sample + can	385.2	390.7		
Dry Sample + can	319.4	336.9		
Weight can	34.0	33.9		
Weight water	65.8	53.8		
Weight Dry Sample	285.4	303		
<u>WATER CONTENT (%)</u>	23.1%	17.8%		
Weight Sample + Liner	1028	1144		
Weight Liner	259	254		
Sample Length (Lo)	5.2	5.8		
Multiplication Factor	1.21	1.21		
DRY DENSITY (pcf)	99.6	108.0		

Location: B-1 Depth: 11.0 - Material Desc USCS: CH	17-4 11.5' cription: Bro	own fat CLAY	ľ						
				Sieve Te	st Data				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weig g Retair (gram	ht Sie ned Wei ns) (gra	eve ight ms)	Percent Finer			
269.70	35.70	1	" 0	.00	0.00	100.0			
		#4	4 32	.20 3	1.00	99.5			
		#1	0 31	.90 3	1.00	99.1			
		#4	0 33	.70 3	1.00	97.9			
		#20	0 47	47.33 31.00 91.		91.0			
			H	lydrometer	Test Da	ata			
Percent passir Weight of hydr Table of compo Temp., deg. Comp. corr.: Meniscus corr. Specific gravit Hydrometer ty Hydrometer	ig #4 based u ometer samp osite correct C: 11 ection only = y of solids = pe = 151H effective der	Ippon complete ippon complete iple =59.61 ion values: 3.2 18 3.5 -3 0.5 2.70	sample = 9 3.4 3.5 = 16.29496	99.5 19.0 -3.0 54 - 0.2645 x	20.8 -3.0	22.0 -2.0)		
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
1.00	18.2	1.0370	1.0335	0.0138	37.5	6.4	0.0347	88.8	
2.00	18.2	1.0355	1.0320	0.0138	36.0	6.8	0.0253	84.8	
5.00	18.2	1.0320	1.0285	0.0138	32.5	7.7	0.0171	75.5	
15.00	18.4	1.0275	1.0240	0.0137	28.0	8.9	0.0106	63.6	
30.00	18.5	1.0260	1.0226	0.0137	26.5	9.3	0.0076	59.9	
60.00	19.0	1.0232	1.0203	0.0136	23.8	10.0	0.0056	53.7	
250.00	20.8	1.0200	1.0170	0.0133	20.5	10.9	0.0028	45.1	
1440.00	22.0	1.0160	1.0140	0.0131	16.5	11.9	0.0012	37.1	
			Fi	ractional Co	ompone	nts			
Cobl	ples	Grave	9	San	nd		Silt		Clay
0.	0	0.5		8.5	5		39.2		51.8
	I		I						
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
				0.0044	0.0077	0.020	2 0.0256	0.0425	0.2131
Fineness Modulus 0.15			_ B. Hille	brandt So	ils Tes	ting, Inc.			

ocation: B-1 epth: 15.5 - laterial Desc	17-4 16.0' cription: Oli	ive brown cla	iyey SAND						
SCS: SC				Sieve Te	est Data				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Openir Size	e Weig ng Retair (gran	jht Sio ned We ns) (gra	eve ight ams)	Percent Finer			
341.70	34.20		1" 0	0.00	0.00	100.0			
		#	#4 46	5.40	31.00	95.0			
	#10		10 51	.10	31.00	88.5			
	#40		40 130	0.50	31.00	56.1			
	#200		00 118	118.20 31.00					
			ł	lydrometer	r Test Da	ata			
leight of hydr able of comp Temp., deg. Comp. corr.: eniscus corr pecific gravit ydrometer ty Hydrometer	ometer sam osite correct C: 1 	ple =90.04 ion values: 8.2 1 3.5 0.5 2.7 oth equation:	8.4 3.5 L = 16.29490	19.0 -3.0 64 - 0.2645 x	20.8 -3.0	22.0 -2.0)		
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	I K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
1.00	18.2	1.0205	1.0170	0.0138	21.0	10.7	0.0451	26.5	
2.00	18.2	1.0185	1.0150	0.0138	19.0	11.3	0.0326	23.4	
5.00	18.2	1.0180	1.0145	0.0138	18.5	11.4	0.0208	22.6	
15.00	18.4	1.0160	1.0125	0.0137	16.5	11.9	0.0122	19.5	
30.00	18.5	1.0150	1.0116	0.0137	15.5	12.2	0.0087	18.1	
60.00	19.0	1.0130	1.0100	0.0136	13.5	12.7	0.0063	15.6	
250.00	20.8	1.0110	1.0080	0.0133	11.5	13.3	0.0031	12.5	
1440.00	22.0	1.0085	1.0065	0.0131	9.0	13.9	0.0013	10.1	
			F	ractional C	ompone	ents			
Cobl	oles	Grav	el	Sai	nd		Silt	C	Clay
0.	0	5.0)	67	.3		13.5	1	4.2
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0057	0.0133	0.1068	0.3287	0.4992	1.199	2 1.5794	2.2821	4.7588
Fineness Modulus									
1.91									

Location: B-1 Depth: 6.0 - 6 Material Desc	17-5 5.5' cription: Bro	own clayey S	AND with	gravel					
USCS: SC				Sieve Te	est Data				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Openin Size	Weiq g Retai (grar	ght Sie ned We ns) (gra	eve ight ams)	Percent Finer			
686.80	230.20	1	." (0.00	0.00	100.0			
		#	4 10	1.80	31.00	84.5			
		#1	0 62	2.40	31.00	77.6			
		#4	0 8.	3.10	31.00	66.2			
		#20	0 12	2.70	31.00	46.1			
				Hydromete	r Test Da	ata			
Percent passir Weight of hydr Table of comp Temp., deg. Comp. corr.: Meniscus corr Specific gravit Hydrometer ty Hydrometer	ng #10 based ometer samp osite correct C: 11 ection only = y of solids = pe = 151H effective der	upon comple ble =100.34 ion values: 8.2 1 3.5 - 0.5 2.7 oth equation: 1	te sample = 8.4 3.5 - = 16.2949	: 77.6 19.0 -3.0 64 - 0.2645 x	20.8 -3.0	22.0 -2.0))		
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	d K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
1.00	18.2	1.0390	1.0355	0.0138	39.5	5.8	0.0333	43.6	
2.00	18.2	1.0375	1.0340	0.0138	38.0	6.2	0.0243	41.8	
5.00	18.2	1.0360	1.0325	0.0138	36.5	6.6	0.0158	39.9	
15.00	18.4	1.0315	1.0280	0.0137	32.0	7.8	0.0099	34.4	
30.00	18.5	1.0295	1.0261	0.0137	30.0	8.4	0.0072	32.0	
60.00	19.0	1.0270	1.0240	0.0136	27.5	9.0	0.0053	29.5	
250.00	20.8	1.0230	1.0200	0.0133	23.5	10.1	0.0027	24.6	
1440.00	22.0	1.0185	1.0165	0.0131	19.0	11.3	0.0012	20.3	
			F	ractional C	ompone	ents			
Cobbles		Grav	el	Sanc			Silt		Clay
0.0		15.5		38.4		17.1		29.0	
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0056	0.1199	0.2597	2.767	5.0331	8.7754	14.9979
Fineness Modulus 1.90			_ B. Hille	ebrandt So	oils Tes	ting, Inc.			

				Sieve Te	st Data			
Dry Sample and Tare (grams)	Tare (grams)	Sieve Openin Size	Weigh g Retaine (grams	t Sie d We) (gra	eve ight ims)	Percent Finer		
710.30	271.40	1	" 0.0	00	0.00	100.0		
		#	4 64.7	0 3	31.00	92.3		
		#1	0 73.3	30 E	31.00	82.7		
		#4	0 111.0	00 3	31.00	64.5		
		#20	0 139.2	20 3	31.00	39.8		
			Ну	vdrometer	Test D	ata		
Table of compo Temp., deg. Comp. corr.: Meniscus corre Specific gravity Hydrometer tyj Hydrometer	cosite correcting C: 18 -3 ection only = 2 y of solids = 2 be = $151H$ effective depi	.2 18 .5 -5 0.5 2.7	3.4 1 3.5 -	9.0 3.0	20.8 -3.0	22.0 -2.0) 21) -2	3 5
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
1.00	18.2	1.0317	1.0283	0.0138	32.3	7.8	0.0383	38.3
2.00	18.2	1.0300	1.0265	0.0138	30.5	8.2	0.0279	35.9
5.00	18.4	1.0280	1.0245	0.0137	28.5	8.8	0.0182	33.2
15.00	19.3	1.0270	1.0240	0.0136	27.5	9.0	0.0105	32.5
30.00	19.8	1.0268	1.0237	0.0135	27.3	9.1	0.0074	32.2
60.00	20.2	1.0250	1.0220	0.0134	25.5	9.6	0.0054	29.8
250.00	20.4	1.0217	1.0188	0.0134	22.3	10.4	0.0027	25.4
1440.00	21.3	1.0172	1.0148	0.0132	17.8	11.6	0.0012	20.0
			Fractional C	Components	\$			
---------------------------------	--------	---------	--------------	------------	--------	---------	-------------	------------
Cobbles	Gra	ivel	Sa	Ind	S	ilt	CI	ау
0.0	7.	.7	52	2.5	10).5	29	9.3
				2				
D ₁₀ D ₁₅	0.0012	0.0055	0.1813	0.3235	1 5664	2 4423	D 90	D95
1.75								

_____ B. Hillebrandt Soils Testing, Inc. __

Location: B-17-6 Depth: 21.0 - 21.5' Material Description: Brown lean CLAY with sand USCS: CL Tested by: BH

				Sieve Te	st Data				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sie Wei (gra	ve ght ms)	Percent Finer			
256.80	34.00	1'	0.00	C	0.00	100.0			
		#4	31.00) 3	1.00	100.0			
		#10	33.60) 3	1.00	98.8			
		#40	42.70) 3	1.00	93.6			
		#200	54.60) 3	1.00	83.0			
			Hy	drometer	Test Da	ata			
Hydrometer tes Percent passin Weight of hydro Table of compo Temp., deg. (Comp. corr.: Meniscus corre Specific gravity Hydrometer typ Hydrometer of	t uses mater g #10 based to ometer sample posite correction C: 18 -3 ection only = 0 y of solids = 2 be = 151H effective dept	ial passing #1 upon complete le =57.96 on values: .2 18 .5 -3 0.5 2.7 th equation: L	0 sample = 98 .4 19 .5 -3 = 16.294964	3.8 9.0 3.0 - 0.2645 x	20.8 -3.0 Rm	22.0 -2.0) 21.) -2.	3 5	
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
1.00	18.2	1.0295	1.0260	0.0138	30.0	8.4	0.0398	70.4	
2.00	18.2	1.0285	1.0250	0.0138	29.0	8.6	0.0286	67.7	
5.00	18.6	1.0250	1.0217	0.0137	25.5	9.6	0.0189	58.7	
15.00	19.3	1.0210	1.0180	0.0136	21.5	10.6	0.0114	48.7	
30.00	19.8	1.0190	1.0160	0.0135	19.5	11.1	0.0082	43.3	
60.00	20.2	1.0170	1.0140	0.0134	17.5	11.7	0.0059	37.9	
250.00	20.4	1.0137	1.0108	0.0134	14.3	12.5	0.0030	29.1	
1440.00	21.3	1.0100	1.0075	0.0132	10.5	13.5	0.0013	20.3	

				Fractional C	components	\$			
Cobbl	es	Gra	avel	Sa	nd	s	ilt	CI	ау
0.0		0	0.0	17	7.0	47	7.6	35	5.4
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0032	0.0123	0.0200	0.0653	0.0835	0.1226	0.7147
Fineness									
0.25									

Location: B-17-7 Depth: 21.0 - 21.5' Material Description: Brownish gray lean CLAY with sand USCS: CL Tested by: BH

				Sieve Tes	st Data				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Openin Size	Weight g Retaine (grams	: Sie d Weig) (gran	ve ght ns)	Percent Finer			
254.30	33.60	1	" 0.0	0	0.00	100.0			
		#	4 33.3	0 3	1.00	99.0			
		#1	0 37.2	0 3	1.00	96.1			
		#4	0 52.3	0 3	1.00	86.5			
		#20	0 61.8	0 3	1.00	72.5			
			Ну	drometer	Test Da	ata			
Hydrometer tes Percent passin Weight of hydro Table of compo Temp., deg. Comp. corr.: Meniscus corre Specific gravity Hydrometer typ Hydrometer	st uses materi ig #10 based u ometer sample osite correction C: 18 -3 ection only = (y of solids = 2 20 = 151H effective dept	ial passing # upon complet e =53.88 on values: .2 11 .5 - .7 .7 h equation: L	10 te sample = 96 8.4 1 3.5 - - = 16.294964	5.1 9.0 3.0 - 0.2645 x	20.8 -3.0 Rm	22.0 -2.0) 21.) -2.	3 5	
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
1.00	18.2	1.0270	1.0235	0.0138	27.5	9.0	0.0413	66.6	
2.00	18.2	1.0250	1.0215	0.0138	25.5	9.6	0.0300	60.9	
5.00	18.6	1.0230	1.0197	0.0137	23.5	10.1	0.0194	55.7	
15.00	19.3	1.0210	1.0180	0.0136	21.5	10.6	0.0114	51.0	
30.00	19.8	1.0195	1.0165	0.0135	20.0	11.0	0.0082	46.8	
60.00	20.2	1.0180	1.0150	0.0134	18.5	11.4	0.0058	42.5	
250.00	20.4	1.0135	1.0105	0.0134	14.0	12.6	0.0030	29.8	
1440.00	21.3	1.0095	1.0070	0.0132	10.0	13.6	0.0013	19.8	

				Fractional C	Component	S			
Cobb	les	Gra	avel	Sa	Ind	s	ilt	CI	ay
0.0)	1.	.0	26	5.5	32	2.7	39	9.8
			1						
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0013	0.0030	0.0105	0.0283	0.1916	0.3515	0.6846	1.5695
Fineness Modulus									
0.61									

Location: B-29-1 Depth: 15.5 - 16.0' Material Description: Olive gray silty SAND with gravel USCS: SM Tested by: BH

				Sieve Tes	st Data				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight g Retaine (grams	t Sie d Weig) (grai	ve ght ms)	Percent Finer			
319.40	34.00	1	" 0.0	00	0.00	100.0			
		#4	4 92.7	0 3	1.00	78.4			
		#1	0 67.7	0 3	1.00	65.5			
		#4	0 109.6	50 3	1.00	38.0			
		#20	0 98.3	30 3	1.00	14.4			
			Ну	drometer	Test Da	ata			
Percent passing Weight of hydro Table of compo Temp., deg. 0 Comp. corr.: Meniscus corre Specific gravity Hydrometer typ Hydrometer of	g #10 based u cometer sampl posite correction C: 18 -3. ection only = (v of solids = 2 be = 151H effective dept	a) passing #1 upon complet e =80.46 on values: .2 18 .5 -3 .5 -3 .5 -3 .7 h equation: L	e sample = 6. 3.4 1 3.5 -	5.5 9.0 3.0	20.8 -3.0 Rm	22.0 -2.0) 21.) -2.	.3 .5	
Elapsed Time (min.)	Temp.	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter	Percent Finer	
1.00	19.3	1.0130	1 0100	0.0136	13.5	12.7	0.0484	12.9	
2.00	19.3	1.0130	1.0100	0.0136	12.0	13.1	0.0347	11.0	
5.00	19.5	1.0110	1.0080	0.0135	11.5	13.3	0.0220	10.3	
15.00	19.8	1.0100	1.0070	0.0135	10.5	13.5	0.0128	9.1	
30.00	19.9	1.0095	1.0065	0.0135	10.0	13.6	0.0091	8.4	
60.00	20.2	1.0090	1.0060	0.0134	9.5	13.8	0.0064	7.8	
250.00	20.4	1.0075	1.0045	0.0134	8.0	14.2	0.0032	5.8	
1440.00	21.3	1.0065	1.0040	0.0132	7.0	14.4	0.0013	5.2	

Cob	bles	Gra	avel	Sa	nd	S	ilt	CI	ау
0	.0	21	.6	64	1.0	7	.3	7	.1
				1		1	1		1
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0182	0.0842	0.1423	0.2732	0.8163	1.4351	5.3427	7.7609	11.4264	16.9911
Fineness Modulus	Cu	Cc							
3.16	78.84	2.86							

Location: B-29-1 Depth: 25.0 - 25.4. Material Description: Olive brown to olive gray clayey SAND USCS: SC Tested by: BH

				Sieve Te	st Data				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retaine (grams	: Sie d Wei) (gra	ve ght ms)	Percent Finer			
336.90	33.90	1	' 0.0	0	0.00	100.0			
		#4	42.4	0 3	1.00	96.2			
		#10) 66.7	0 3	1.00	84.5			
		#4() 110.7	0 3	1.00	58.2			
		#200) 99.1	0 3	1.00	35.7			
			Ну	drometer	Test Da	ata			
Percent passin Weight of hydro Table of compo Temp., deg. (Comp. corr.: Meniscus corre Specific gravity Hydrometer typ Hydrometer of	g #10 based to ometer sampl posite correction C: 18 -3, ection only = (y of solids = 2 be = 151H effective dept	al passing #1 upon complet le =96.54 on values: .2 18 .5 -3 0.5 .7 h equation: L	e sample = 84 .4 1 .5 - = 16.294964	4.5 9.0 3.0 - 0.2645 x	20.8 -3.0 Rm	22.0 -2.0) 21.) -2.	3 5	
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
1.00	19.3	1.0275	1.0245	0.0136	28.0	8.9	0.0404	34.0	
2.00	19.3	1.0257	1.0228	0.0136	26.3	9.4	0.0293	31.6	
5.00	19.5	1.0235	1.0205	0.0135	24.0	9.9	0.0191	28.5	
15.00	19.8	1.0228	1.0197	0.0135	23.3	10.1	0.0111	27.4	
30.00	19.9	1.0210	1.0180	0.0135	21.5	10.6	0.0080	25.0	
60.00	20.2	1.0190	1.0160	0.0134	19.5	11.1	0.0058	22.2	
250.00	20.4	1.0160	1.0130	0.0134	16.5	11.9	0.0029	18.1	
1440.00	21.3	1.0125	1.0100	0.0132	13.0	12.9	0.0012	13.9	

			1	Fractional C	Component	\$			
Cobl	bles	Gra	ivel	Sa	Ind	S	ilt	CI	ay
0.	0	3.	.8	60).5	14	1.5	21	.2
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D95
	0.0016	0.0042	0.0243	0.2644	0.4724	1.5207	2.0693	2.8650	4.2138
Fineness Modulus 1.86									

B. Hillebrandt Soils Testing, Inc.

Tested By: BH

Tested By: BH

Sieve Test Data

Client: A3Geo Project: Napa River Restoration - OVOK Project Number: 1110-3A Location: Site 19 River Channel Sample Number: Bulk 19-1 Material Description: Dark yellowish brown clayey SAND USCS: SC Tested by: BH

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer			
808.50	274.50	2.5"	31.00	31.00	100.0			
		1.0"	31.00	31.00	100.0			
		.75"	31.00	31.00	100.0			
		.375"	33.90	31.00	99.5			
		#4	39.30	31.00	97.9			
		#8	42.60	31.00	95.7			
		#10	33.70	31.00	95.2			
		#16	41.00	31.00	93.4			
		#30	73.80	31.00	85.3			
		#40	94.50	31.00	73.4			
		#50	115.00	31.00	57.7			
		#100	143.50	31.00	36.6			
		#200	63.90	31.00	30.5			
			Hydı	ometer Tes	st Data			
Hydrometer te Percent passin Weight of hyd Table of comp Temp., deg. Comp. corr.: Meniscus corr Specific gravit Hydrometer ty Hydrometer	est uses matering #10 based up rometer sample osite correction C: 26. -5. rection only = (ty of solids = 2 pe = $151H$ effective dept	al passing #10 upon complete s e =50.04 on values: .0 26.2 0 -5.4 0.7 .7 h equation: L =	sample = 95.2 16.294964 -	2 0.2645 x Rm				
Elapsed Time (min.)	Temp. (deg. C.)	Actual C Reading	Corrected Reading	К	Eff. Rm Depth	Diameter n (mm.)	Percent Finer	
2.00	24.5	1.0115	1.0065	0.0127 1	2.2 13.1	0.0325	19.6	

2.00	24.5	1.0115	1.0065	0.0127	12.2	13.1	0.0325	19.6
5.00	24.5	1.0110	1.0060	0.0127	11.7	13.2	0.0207	18.1
15.00	24.5	1.0090	1.0040	0.0127	9.7	13.7	0.0122	12.1
30.00	24.5	1.0085	1.0035	0.0127	9.2	13.9	0.0087	10.6
90.00	24.5	1.0075	1.0025	0.0127	8.2	14.1	0.0050	7.6
250.00	24.7	1.0070	1.0020	0.0127	7.7	14.3	0.0030	6.0
1440.00	23.7	1.0060	1.0010	0.0129	6.7	14.5	0.0013	3.0

____ B. Hillebrandt Soils Testing, Inc. _____

11/29/2012

				Fractional (Components	S		1	
Cobl	oles	Gra	avel	Sa	and	s	ilt	CI	ау
0.	0	2	.1	67	7.4	23	3.0	7.	.5
				-		-			
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0077	0.0157	0.0342	0.0718	0.2475	0.3159	0.5032	0.5922	0.7653	1.8600
Fineness Modulus	Cu	Cc							
1.34	41.26	2.13							

Client: A3Geo Project: Napa River Restoration - OVOK Project Number: 1110-3A Location: Site 22 River Channel Sample Number: Bulk 22-1 Material Description: Brown clayey SAND USCS: SC Tested by: BH

			Sie	eve Test Dat	а
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
618.10	230.30	2.5"	31.00	31.00	100.0
		1.0"	31.00	31.00	100.0
		.75"	31.00	31.00	100.0
		.375"	31.00	31.00	100.0
		#4	33.40	31.00	99.4
		#8	37.00	31.00	97.8
		#10	33.00	31.00	97.3
		#16	40.30	31.00	94.9
		#30	47.20	31.00	90.7
		#40	47.10	31.00	86.6
		#50	62.10	31.00	78.6
		#100	135.10	31.00	51.7
		#200	83.80	31.00	38.1
			Hydro	meter Test	Data
Hydrometer te Percent passi Weight of hyd Table of comp	est uses materia ng #10 based u rometer sample posite correctio	al passing #10 pon complete s e =50.06 n values:	ample = 97.3		

Table of composite correction values:Temp., deg. C:26.026.2Comp. corr.:-5.0-5.4

Meniscus correction only = 0.7

Specific gravity of solids = 2.7

Hydrometer type = 151H

Hydrometer effective depth equation: L = 16.294964 - 0.2645 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	24.5	1.0125	1.0075	0.0127	13.2	12.8	0.0322	23.2
5.00	24.5	1.0120	1.0070	0.0127	12.7	12.9	0.0205	21.6
15.00	24.5	1.0105	1.0055	0.0127	11.2	13.3	0.0120	17.0
30.00	24.5	1.0095	1.0045	0.0127	10.2	13.6	0.0086	13.9
90.00	24.5	1.0075	1.0025	0.0127	8.2	14.1	0.0050	7.7
250.00	24.7	1.0070	1.0020	0.0127	7.7	14.3	0.0030	6.2
1440.00	23.7	1.0060	1.0010	0.0129	6.7	14.5	0.0013	3.1

_ B. Hillebrandt Soils Testing, Inc. __

11/29/2012

					components	5		1	
Cobl	oles	Gra	avel	Sa	nd	s	ilt	CI	ay
0.	0	0	.6	61	.3	30).4	7	.7
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0063	0.0096	0.0163	0.0501	0.1415	0.1877	0.3144	0.3882	0.5547	1.1992
Fineness Modulus	Cu	Cc							
0.87	29.96	2.13							

Tested By: BH

Tested By: BH

Location: B-29-1 Material Description: Olive brown. Sample dropped off 5/10/13 USCS: SC Tested by: BH

and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Siev Weig (gran	/e jht ns)	Percent Finer		
586.30	280.00	2.5"	0.00) (0.00	100.0		
		1.0"	0.00) (0.00	100.0		
		.75"	0.00) (0.00	100.0		
		.375"	0.00) (0.00	100.0		
		#4	57.50	31	.00	91.3		
		#8	70.90	31	.00	78.3		
		#10	37.90	31	.00	76.1		
		#16	48.30	31	.00	70.4		
		#30	47.60	31	.00	65.0		
		#40	46.50	31	.00	59.9		
ydrometer tes ercent passin leight of hydro able of compo	t uses mater g #4 based u ometer samp osite correctio	ial passing #4 pon complete s le =53.76 on values:	Hyd ample = 91.3	Irometer `	Test Da	ta		
Hydrometer tes Percent passin Veight of hydri Fable of compo Temp., deg. (Comp. corr.: Meniscus corres Specific gravity Hydrometer typ Hydrometer of	t uses mater g #4 based u ometer samp osite correction C: 23 -1 ection only = v of solids = 2 be = 151H effective dept	ial passing #4 pon complete s le =53.76 on values: .5 23.0 .5 -1.3 0.5 2.7 th equation: L =	Hyc ample = 91.3 5 -1 : 16.294964 -	Irometer [•] 3 • 0.2645 x	23.8 -1.5 Rm	ta 24.2 -1.0	2 0	
lydrometer tes Percent passin Veight of hydro able of compo Temp., deg. (Comp. corr.: Meniscus corre Specific gravity lydrometer typ Hydrometer typ Elapsed Time (min.)	t uses mater g #4 based u ometer samp osite correction C: 23 -1 ection only = v of solids = 2 be = 151H effective dept Temp. (dea. C.)	ial passing #4 pon complete s le =53.76 on values: .5 23.0 .5 -1.3 0.5 2.7 th equation: L = Actual Reading	Hyc ample = 91.3 5 -1 : 16.294964 - Corrected Reading	lrometer ` 3 .7 .5 • 0.2645 x K	23.8 -1.5 Rm Rm	ta 24.2 -1.0 Eff. Depth	2) Diameter (mm.)	Percent Finer
lydrometer tes ercent passin Veight of hydr able of compo Temp., deg. (Comp. corr.: leniscus corre pecific gravity lydrometer typ Hydrometer o Elapsed Time (min.) 1.00	t uses mater g #4 based u poster samp osite correction C: 23 -1 contron only = of solids = 2 of solids = 2 of solids = 2 of solids = 2 to f solids = 2 of solids = 3 of solids = 2 of solids = 3 of so	ial passing #4 pon complete s le =53.76 on values: .5 23.0 .5 -1.3 0.5 2.7 th equation: L = Actual Reading 1.0170	Hyd ample = 91.3 5 -1 : 16.294964 - Corrected Reading 1.0155	lrometer ⁻ 3 7 5 • 0.2645 x 1 K 0.0129	23.8 -1.5 Rm Rm 17.5	ta 24.2 -1.0 Eff. Depth 11.7	2) Diameter (mm.) 0,0440	Percent Finer 41.8
Aydrometer tes Percent passin Veight of hydro Table of compo Temp., deg. (Comp. corr.: Meniscus corre Specific gravity Hydrometer typ Hydrometer typ Elapsed Time (min.) 1.00 2.00	t uses mater g #4 based u ometer samp site correction C: 23 -1 ection only = v of solids = 2 be = 151H effective dept Temp. (deg. C.) 23.5 23.5	ial passing #4 pon complete s le =53.76 on values: .5 23.0 .5 -1.5 0.5 2.7 th equation: L = Actual Reading 1.0170 1.0160	Hyc ample = 91.3 5 23 5 -1 : 16.294964 - Corrected Reading 1.0155 1.0145	Irometer 3 5 • 0.2645 x K 0.0129 0.0129 0.0129	23.8 -1.5 Rm 17.5 16.5	ta 24.2 -1.0 Eff. Depth 11.7 11.9	2 Diameter (mm.) 0.0440 0.0315	Percent Finer 41.8 39.1
Aydrometer tes Percent passin Veight of hydro Table of compo Temp., deg. (Comp. corr.: Meniscus corre Specific gravity Aydrometer typ Hydrometer typ Hydrometer typ Hydrometer typ Hydrometer typ 1.00 2.00 5.00	t uses mater g #4 based u ometer samp osite correction C: 23 -1 ection only = r of solids = 2 be = 151H effective dept Temp. (deg. C.) 23.5 23.5 23.5	ial passing #4 pon complete s le =53.76 on values: .5 23.0 .5 -1.2 0.5 2.7 th equation: L = Actual Reading 1.0170 1.0160 1.0150	Hyc mample = 91.3 5 23 5 -1 16.294964 - Corrected Reading 1.0155 1.0145 1.0135	Irometer 3.7 .5 • 0.2645 x K 0.0129 0.0129 0.0129 0.0129 0.0129	23.8 -1.5 Rm 17.5 16.5 15.5	ta 24.: -1.0 Eff. Depth 11.7 11.9 12.2	2 Diameter (mm.) 0.0440 0.0315 0.0201	Percent Finer 41.8 39.1 36.4
lydrometer tes ercent passin Veight of hydro Temp., deg. (Comp. corr.: Meniscus corres pecific gravity lydrometer typ Hydrometer typ Elapsed Time (min.) 1.00 2.00 5.00 15.00	t uses mater g #4 based u ometer samp osite correction C: 23 -1 ection only = v of solids = 2 be = 151H effective deput Temp. (deg. C.) 23.5 23.5 23.5 23.6	ial passing #4 pon complete s le =53.76 on values: .5 23.0 .5 -1.3 0.5 2.7 th equation: L = Actual Reading 1.0170 1.0160 1.0150 1.0140	Hyd ample = 91.3 5 23 5 -1 : 16.294964 - Corrected Reading 1.0155 1.0145 1.0135 1.0125	 Irometer ¹ 3.7 .5 • 0.2645 x 1 • K 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 	23.8 -1.5 Rm 17.5 16.5 15.5 14.5	ta 24.2 -1.0 Eff. Depth 11.7 11.9 12.2 12.5	2 Diameter (mm.) 0.0440 0.0315 0.0201 0.0117	Percent Finer 41.8 39.1 36.4 33.7
lydrometer tes ercent passin Veight of hydro able of compo Temp., deg. 0 Comp. corr.: leniscus corre pecific gravity lydrometer typ Hydrometer of Elapsed Time (min.) 1.00 2.00 5.00 15.00 30.00	t uses mater g #4 based u ometer samp site correction c: 23 -1 ection only = 1 of solids = 2 of soli	ial passing #4 pon complete s le =53.76 on values: .5 23.0 .5 -1.2 0.5 2.7 th equation: L = Actual Reading 1.0170 1.0160 1.0150 1.0140 1.0130	Hyd ample = 91.3 5 -1 : 16.294964 - Corrected Reading 1.0155 1.0145 1.0135 1.0125 1.0115	k 0.02645 x 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129	23.8 -1.5 Rm 17.5 16.5 15.5 14.5 13.5	ta 24.2 -1.0 Eff. Depth 11.7 11.9 12.2 12.5 12.7	2 Diameter (mm.) 0.0440 0.0315 0.0201 0.0117 0.0084	Percent Finer 41.8 39.1 36.4 33.7 31.0
lydrometer tes ercent passin Veight of hydro able of compo Temp., deg. (Comp. corr.: leniscus corre pecific gravity lydrometer typ Hydrometer typ Hydrometer of Elapsed Time (min.) 1.00 2.00 5.00 15.00 30.00 60.00	t uses mater g #4 based u poneter samp site correction C: 23 -1 ection only = r of solids = 2 De = 151H effective deput Temp. (deg. C.) 23.5 23.5 23.5 23.5 23.6 23.7 23.8	ial passing #4 pon complete s le =53.76 on values: .5 23.0 .5 -1.2 0.5 2.7 th equation: L = Actual Reading 1.0170 1.0160 1.0150 1.0140 1.0130 1.0120	Hyd mample = 91.3 5 23 5 -1 16.294964 - Corrected Reading 1.0155 1.0145 1.0135 1.0135 1.0125 1.0115 1.0105	k 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129	23.8 -1.5 Rm 17.5 16.5 15.5 14.5 13.5 12.5	ta 24.2 -1.0 Eff. Depth 11.7 11.9 12.2 12.5 12.7 13.0	2 Diameter (mm.) 0.0440 0.0315 0.0201 0.0117 0.0084 0.0060	Percent Finer 41.8 39.1 36.4 33.7 31.0 28.3
Aydrometer test Percent passin Veight of hydro Temp., deg. 0 Comp. corr.: Meniscus corres Specific gravity Hydrometer typ Hydrometer typ Hydrometer typ Elapsed Time (min.) 1.00 2.00 5.00 15.00 30.00 60.00 250.00	t uses mater g #4 based u posite correction C: 23 -1 ection only = y of solids = 2 be = 151H effective deput Temp. (deg. C.) 23.5 23.5 23.5 23.5 23.6 23.7 23.8 23.8	ial passing #4 pon complete s le =53.76 on values: .5 23.0 .5 -1.2 0.5 2.7 th equation: L = Actual Reading 1.0170 1.0160 1.0150 1.0140 1.0130 1.0120 1.0110	Hyd ample = 91.3 5 23 5 -1 : 16.294964 - Corrected Reading 1.0155 1.0145 1.0135 1.0125 1.0115 1.0105 1.0095	 Irometer 7 3 7 5 0.2645 x 1 6 6 6 6 6 7 7 7 8 7 8 7 8 10 12 14 <	23.8 -1.5 Rm 17.5 16.5 15.5 14.5 13.5 12.5 11.5	ta 24.2 -1.0 Eff. Depth 11.7 11.9 12.2 12.5 12.7 13.0 13.3	2 Diameter (mm.) 0.0440 0.0315 0.0201 0.0117 0.0084 0.0060 0.0030	Percent Finer 41.8 39.1 36.4 33.7 31.0 28.3 25.6

B. Hillebrandt Soils Testing, Inc.

5/13/2013

			Hydror	neter Test	Data (cont	tinued)			
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
			E	ractional (omnononé				
					omponent	.5			
Cobb	oles	Gra	vel	Sa	nd		Silt	C	ay
0.0	0	8.	7	45	5.9	1	8.0	27	7.4
					1	1			,
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0074	0.1612	0.4267	2.6207	3.4270	4.4197	5.9016
Fineness Modulus									
1.90									

B. Hillebrandt Soils Testing, Inc.

Location: Bulk 18-1 Material Description: Olive brown sandy lean CLAY. Sample dropped off 5/10/13 USCS: CL Tested by: BH

				Sieve Tes	t Data				
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Siev d Weig (gran	∕e ht ∣ ns)	Percent Finer			
579.10	272.00	2.5"	0.0	0 0	0.00	100.0			
		1.0"	0.0	0 0	0.00	100.0			
		.75"	0.0	0 0	0.00	100.0			
		.375"	36.1	0 31	.00	98.3			
		#4	37.9	0 31	.00	96.1			
		#8	48.8	0 31	.00	90.3			
		#10	36.4	0 31	.00	88.5			
		#16	52.2	0 31	.00	81.6			
		#30	56.8	0 31	.00	73.2			
		#40	50.3	0 31	.00	66.9			
Percent passing Weight of hydro Table of compo Temp., deg. (Comp. corr.: Meniscus corre Specific gravity Hydrometer typ Hydrometer of	g #4 based u posite correction C: 23 -1 ection only = v of solids = 2 be = 151H effective dep	pon complete s le =53.86 on values: .5 23.6 .5 -1.5 0.5 2.7 th equation: L =	ample = 96.	1 3.7 1.5 - 0.2645 x	23.8 -1.5 Rm	24.: -1.0	20		
Elapsed	Temp.	Actual	Corrected			Eff.	Diameter	Percent	
Time (min.)	(deg. C.)	Reading	Reading	K	Rm	Depth	(mm.)	Finer	
1.00	23.5	1.0180	1.0165	0.0129	18.5	11.4	0.0435	46.8	
2.00	23.5	1.0170	1.0155	0.0129	17.5	11.7	0.0311	43.9	
5.00	23.5	1.0160	1.0145	0.0129	16.5	11.9	0.0199	41.1	
15.00	23.6	1.0150	1.0135	0.0129	15.5	12.2	0.0116	38.3	
30.00	23.7	1.0140	1.0125	0.0129	14.5	12.5	0.0083	35.4	
00.00	22.0	1 0130	1.0115	0.0128	13.5	12.7	0.0059	32.6	
60.00	23.8	1.0150		0.0100	12.0	13.1	0.0029		
60.00 250.00	23.8 23.8	1.0115	1.0100	0.0128	12.0	13.1	0.002/	28.3	
60.00 250.00	23.8 23.8	1.0115	1.0100	0.0128	12.0	15.1	0.002/	28.3	

B. Hillebrandt Soils Testing, Inc.

5/13/2013

			I	Fractional C	Components	\$			
Cobl	oles	Gra	avel	Sa	nd	s	ilt	CI	ay
0.	0	3	.9	45	5.6	19	9.1	31	.4
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0040	0.0693	0.2639	1.0266	1.5202	2.2920	3.9976
Fineness Modulus									
1.44									
			в пш	obrandt S	oile Toetin	a Inc			

Location: B-29-1 Material Description: Olive brown. Sample dropped off 5/10/13 USCS: SC Tested by: BH

and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Siev Weig (gran	/e jht ns)	Percent Finer		
586.30	280.00	2.5"	0.00) (0.00	100.0		
		1.0"	0.00) (0.00	100.0		
		.75"	0.00) (0.00	100.0		
		.375"	0.00) (0.00	100.0		
		#4	57.50	31	.00	91.3		
		#8	70.90	31	.00	78.3		
		#10	37.90	31	.00	76.1		
		#16	48.30	31	.00	70.4		
		#30	47.60	31	.00	65.0		
		#40	46.50	31	.00	59.9		
ydrometer tes ercent passin leight of hydro able of compo	t uses mater g #4 based u ometer samp osite correctio	ial passing #4 pon complete s le =53.76 on values:	Hyd ample = 91.3	Irometer `	Test Da	ta		
Hydrometer tes Percent passin Veight of hydri Fable of compo Temp., deg. (Comp. corr.: Meniscus corres Specific gravity Hydrometer typ Hydrometer of	t uses mater g #4 based u ometer samp osite correction C: 23 -1 ection only = v of solids = 2 be = 151H effective dept	ial passing #4 pon complete s le =53.76 on values: .5 23.0 .5 -1.3 0.5 2.7 th equation: L =	Hyc ample = 91.3 5 -1 : 16.294964 -	Irometer [•] 3 • .7 • .5 • 0.2645 x	23.8 -1.5 Rm	ta 24.2 -1.0	2 0	
lydrometer tes Percent passin Veight of hydro able of compo Temp., deg. (Comp. corr.: Meniscus corre Specific gravity lydrometer typ Hydrometer typ Elapsed Time (min.)	t uses mater g #4 based u ometer samp osite correction C: 23 -1 ection only = v of solids = 2 be = 151H effective dept Temp. (dea. C.)	ial passing #4 pon complete s le =53.76 on values: .5 23.0 .5 -1.3 0.5 2.7 th equation: L = Actual Reading	Hyc ample = 91.3 5 -1 : 16.294964 - Corrected Reading	lrometer ` 3 .7 .5 • 0.2645 x K	23.8 -1.5 Rm Rm	ta 24.2 -1.0 Eff. Depth	2) Diameter (mm.)	Percent Finer
lydrometer tes ercent passin Veight of hydr able of compo Temp., deg. (Comp. corr.: leniscus corre pecific gravity lydrometer typ Hydrometer o Elapsed Time (min.) 1.00	t uses mater g #4 based u poster samp osite correction C: 23 -1 ection only = v of solids = 2 of solids = 2 be = 151H effective dept Temp. (deg. C.) 23.5	ial passing #4 pon complete s le =53.76 on values: .5 23.0 .5 -1.1 0.5 2.7 th equation: L = Actual Reading 1.0170	Hyd ample = 91.3 5 -1 : 16.294964 - Corrected Reading 1.0155	lrometer ⁻ 3 7 5 • 0.2645 x 1 K 0.0129	23.8 -1.5 Rm Rm 17.5	ta 24.2 -1.0 Eff. Depth 11.7	2) Diameter (mm.) 0,0440	Percent Finer 41.8
Aydrometer tes Percent passin Veight of hydro Table of compo Temp., deg. (Comp. corr.: Meniscus corre Specific gravity Hydrometer typ Hydrometer typ Elapsed Time (min.) 1.00 2.00	t uses mater g #4 based u ometer samp site correction C: 23 -1 ection only = v of solids = 2 be = 151H effective dept Temp. (deg. C.) 23.5 23.5	ial passing #4 pon complete s le =53.76 on values: .5 23.0 .5 -1.5 0.5 2.7 th equation: L = Actual Reading 1.0170 1.0160	Hyc ample = 91.3 5 23 5 -1 : 16.294964 - Corrected Reading 1.0155 1.0145	Irometer 3 5 • 0.2645 x K 0.0129 0.0129 0.0129	23.8 -1.5 Rm 17.5 16.5	ta 24.2 -1.0 Eff. Depth 11.7 11.9	2 Diameter (mm.) 0.0440 0.0315	Percent Finer 41.8 39.1
Aydrometer tes Percent passin Veight of hydro Table of compo Temp., deg. (Comp. corr.: Meniscus corre Specific gravity Aydrometer typ Hydrometer typ Hydrometer typ Hydrometer typ Hydrometer typ 1.00 2.00 5.00	t uses mater g #4 based u ometer samp osite correction C: 23 -1 ection only = r of solids = 2 be = 151H effective dept Temp. (deg. C.) 23.5 23.5 23.5	ial passing #4 pon complete s le =53.76 on values: .5 23.0 .5 -1.2 0.5 2.7 th equation: L = Actual Reading 1.0170 1.0160 1.0150	Hyc mample = 91.3 5 23 5 -1 16.294964 - Corrected Reading 1.0155 1.0145 1.0135	Irometer 3.7 .5 • 0.2645 x K 0.0129 0.012 0.0129 0.012 0.0	23.8 -1.5 Rm 17.5 16.5 15.5	ta 24.: -1.0 Eff. Depth 11.7 11.9 12.2	2 Diameter (mm.) 0.0440 0.0315 0.0201	Percent Finer 41.8 39.1 36.4
lydrometer tes ercent passin Veight of hydro Temp., deg. (Comp. corr.: Meniscus corres pecific gravity lydrometer typ Hydrometer typ Elapsed Time (min.) 1.00 2.00 5.00 15.00	t uses mater g #4 based u ometer samp osite correction C: 23 -1 ection only = v of solids = 2 be = 151H effective deput Temp. (deg. C.) 23.5 23.5 23.5 23.6	ial passing #4 pon complete s le =53.76 on values: .5 23.0 .5 -1.3 0.5 2.7 th equation: L = Actual Reading 1.0170 1.0160 1.0150 1.0140	Hyd ample = 91.3 5 23 5 -1 : 16.294964 - Corrected Reading 1.0155 1.0145 1.0135 1.0125	 Irometer ¹ 3.7 .5 • 0.2645 x 1 • K 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 	23.8 -1.5 Rm 17.5 16.5 15.5 14.5	ta 24.2 -1.0 Eff. Depth 11.7 11.9 12.2 12.5	2 Diameter (mm.) 0.0440 0.0315 0.0201 0.0117	Percent Finer 41.8 39.1 36.4 33.7
lydrometer tes ercent passin Veight of hydro able of compo Temp., deg. 0 Comp. corr.: leniscus corre pecific gravity lydrometer typ Hydrometer of Elapsed Time (min.) 1.00 2.00 5.00 15.00 30.00	t uses mater g #4 based u ometer samp site correction c: 23 -1 ection only = 1 of solids = 2 of soli	ial passing #4 pon complete s le =53.76 on values: .5 23.0 .5 -1.2 0.5 2.7 th equation: L = Actual Reading 1.0170 1.0160 1.0150 1.0140 1.0130	Hyd ample = 91.3 5 -1 : 16.294964 - Corrected Reading 1.0155 1.0145 1.0135 1.0125 1.0115	k 0.02645 x 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129	23.8 -1.5 Rm 17.5 16.5 15.5 14.5 13.5	ta 24.2 -1.0 Eff. Depth 11.7 11.9 12.2 12.5 12.7	2 Diameter (mm.) 0.0440 0.0315 0.0201 0.0117 0.0084	Percent Finer 41.8 39.1 36.4 33.7 31.0
lydrometer tes ercent passin Veight of hydro able of compo Temp., deg. (Comp. corr.: leniscus corre pecific gravity lydrometer typ Hydrometer typ Hydrometer of Elapsed Time (min.) 1.00 2.00 5.00 15.00 30.00 60.00	t uses mater g #4 based u poneter samp site correction C: 23 -1 ection only = r of solids = 2 De = 151H effective deput Temp. (deg. C.) 23.5 23.5 23.5 23.5 23.6 23.7 23.8	ial passing #4 pon complete s le =53.76 on values: .5 23.0 .5 -1.2 0.5 2.7 th equation: L = Actual Reading 1.0170 1.0160 1.0150 1.0140 1.0130 1.0120	Hyd mample = 91.3 5 23 5 -1 16.294964 - Corrected Reading 1.0155 1.0145 1.0135 1.0135 1.0125 1.0115 1.0105	k 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129	23.8 -1.5 Rm 17.5 16.5 15.5 14.5 13.5 12.5	ta 24.2 -1.0 Eff. Depth 11.7 11.9 12.2 12.5 12.7 13.0	2 Diameter (mm.) 0.0440 0.0315 0.0201 0.0117 0.0084 0.0060	Percent Finer 41.8 39.1 36.4 33.7 31.0 28.3
Aydrometer test Percent passin Veight of hydro Temp., deg. 0 Comp. corr.: Meniscus corres Specific gravity Hydrometer typ Hydrometer typ Hydrometer typ Elapsed Time (min.) 1.00 2.00 5.00 15.00 30.00 60.00 250.00	t uses mater g #4 based u posite correction C: 23 -1 ection only = y of solids = 2 be = 151H effective deput Temp. (deg. C.) 23.5 23.5 23.5 23.5 23.6 23.7 23.8 23.8	ial passing #4 pon complete s le =53.76 on values: .5 23.0 .5 -1.2 0.5 2.7 th equation: L = Actual Reading 1.0170 1.0160 1.0150 1.0140 1.0130 1.0120 1.0110	Hyd ample = 91.3 5 23 5 -1 : 16.294964 - Corrected Reading 1.0155 1.0145 1.0135 1.0125 1.0115 1.0105 1.0095	 Irometer 7 3 7 5 0.2645 x 1 K 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 0.0129 0.0128 0.0128 0.0128 	23.8 -1.5 Rm 17.5 16.5 15.5 14.5 13.5 12.5 11.5	ta 24.2 -1.0 Eff. Depth 11.7 11.9 12.2 12.5 12.7 13.0 13.3	2 Diameter (mm.) 0.0440 0.0315 0.0201 0.0117 0.0084 0.0060 0.0030	Percent Finer 41.8 39.1 36.4 33.7 31.0 28.3 25.6

B. Hillebrandt Soils Testing, Inc.

5/13/2013

			Hydror	neter Test	Data (cont	tinued)			
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	к	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
			E	ractional (omnononé				
					omponent	.5			
Cobb	oles	Gra	vel	Sa	nd		Silt	C	ay
0.0	0	8.	7	45	5.9	1	8.0	27	7.4
					1	1			,
D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0074	0.1612	0.4267	2.6207	3.4270	4.4197	5.9016
Fineness Modulus									
1.90									

B. Hillebrandt Soils Testing, Inc.

Slake Test Results Napa River - OVOK Reach A3GEO Project #1110-3A

Time	5 sec.	30 sec.	5 min.	30 min.	1 hr	6hr	12 hrs		
			Struc	tural Integrity	Notes			Stability	Notes
Sample ID								Class	
Bulk 1-2 - River Channel (moist)	100	99	95	60	50			4	
Bulk 14-1 - River Channel (moist)	100	100	99.5	99.5	99.5	99.5	99.5	6	
Bulk 17-1 - River Channel	100	99	99	99	90	90	90	6	thin section analyzed
Bulk 18-1 - River Channel	70	10	0					2	
Bulk 19-2 - River Channel	95	90	10					3	
Bulk 22-2 - River Channel	95	90	10					3	
Bulk 22-2 - River Channel (moist)	99	99	99	99	99	99	99	6	
Bulk 29-1 - River Channel	100	100	100	100	100	100	100	6	nothing fell off
B-7-1 @15'	99	85	0					3	
B-17-4 @ 16-16.5'	90	80	0					2	
B-17-6 @ 21'	90	80	65	40				3+	
B-17-7 @ 22'	95	90	70	50				3+	
B-18-1 @ 15-16.5'	95	90	50	0				3	
B-18-1 @ 20.5 - 21'	90	80	50	0				3	
B-22-1 @ 21'	99	90	50	40				3+	
B-26A-1 @ 15.5'	99.5	99.5	99	99	95	90	80	6	
B-29-1 @ 15-15.5'	90	60	55	50				3	thin section analyzed
B-29-1 @ 25.5-26.0'	80	50						2	1/8" gravel remains

	Stability	
	Class	Description
WORST	0	Soil too unstable to sample
	1	50% of structural integrity lost within 5 seconds of insertion in water
	2	50% of structural integrity lost 5-30 seconds after insertion
	3	50% of structural integrity lost within 30 sec. to 5 min. after insertion
	4	50% of structural integrity remaining after 1 hour
	5	50% of structural integrity remaining after 6 hours
BEST	6	50% of structural integrity remaining after 12 hour

Appendix C

Slope Stability Results

O Safaty Factor												
Safety Factor 0.000 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 2.250 2.500 2.500 3.000 3.250 3.500 3.750 4.000										7	.803	
4.250 4.500 4.750 5.000 5.250 5.500 5.750 6.000+									/			
											0	
- - -	L											
						- California de la cali	Ko					
					- State State State State	and the second						
	<u> </u>								<u> </u>			
		Material Name	Color	Unit Weight (lbs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Water Surface	Ru			
		Material 1		120	Mohr-Coulomb	0	30	None	0			
		Material 2		120	Mohr-Coulomb	2500	0	None	0			
		Material 3		120	Mohr-Coulomb	0	35	None	0			
			I	I	1		I	1				
-30 -20 -10	0	10		20	30	40		50		60 70	80	90
A 2 C E C	1	Project								Napa Rive	er - Ovok Reach	
AJGEC		Analysis Descrip	ption									
GEOCONSULTANTS		Drawn By						Scale		1:128	Company File Name	
SLIDEINTERPRET 6.022		Date			5/30/20	013, 3:05:47	7 PM					

SLIDEINTERPRET 6.022

	1
	5
) 110 12	20 130 140
Site 17 - Slope 3-1 - Low GW	/.slim

5/30/2013, 3:05:47 PM

Date

SLIDEINTERPRET 6.022

0 140 160 180
Site 18 - Slope 2-1 - High GW slim

File Name

Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Water Surface	Ru
120	Mohr-Coulomb	0	28	None	0
120	Mohr-Coulomb	2000	0	None	0
120	Mohr-Coulomb	0	35	None	0
120	Mohr-Coulomb	0	28	None	0

gth Type	Cohesion (psf)	Phi (deg)	Water Surface	Ни Туре
Coulomb	0	28	Water Surface	Constant
Coulomb	2000	0	Water Surface	Constant
Coulomb	0	35	Water Surface	Constant
Coulomb	0	28	Water Surface	Constant

Site 18 - Slope 3-1 - High GW.slim

Strength Type	Cohesion Phi (psf) (deg)		Water Surface	Ни Туре	
Mohr-Coulomb	0	28	Water Surface	Constant	
Mohr-Coulomb	2000	0	Water Surface	Constant	
Mohr-Coulomb	0	35	Water Surface	Constant	
Mohr-Coulomb	0	28	Water Surface	Constant	

. . .

Site 18 - Slope 3-1 - Low GW.slim

Safety Factor 0.000 0.250 0.500 0.750 1.000 1.250 2.000 2.250 2.500 2.500 2.500 3.250 3.500 3.500 3.750 4.000 4.250 4.500 4.750 5.000 5.250 5.500 5.750 6.000+ 0 0 0											
	Materia	l Name	Color	Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Water Surface	Ru		
	Mater	rial 1		120	Mohr-Coulomb	0	28	None	0		
-30 -20 -10	0 10	Project	20	30	40 50	60	70	80		90	1
A3GE	Ο	Analysis Descrin	tion				Napa	a River - Ovok	Reach		
GEOCONSULTANTS		Drawn By				Scale 1	:130	Company			
GLOCONSOLIANTS		Date		5	/30/2013, 3:05:47 PM			File Name	2		

ſ										-
	Safety Factor 0.000 0.250 0.500 0.750 1.000 1.250 1.500 2.250 2.500 2.750 3.000 3.250 3.500 3.750 4.000 4.750 5.250 5.500 5.750 6.000+ 0 0 0 0 0 0 0 0 0 0 0 0 0						1.667			
		Material Na	ume Color Unit Weight (lbs/ft3)	Strength Type	Cohesion Ph (psf) (de	i Water g) Surface	Ru			
	-0	Material :	1 120	Mohr-Coulomb	0 32	2 None	0			
			20	30 40		6	0		80	
	V3C	=0	Project					Napa River	- Ovok Reach	
	AJG		Analysis Description						1	
	GEOCONSUL	LTANTS	Drawn By Date		10010 0 05	Scale		1:130	Company File Name	
	SLIDEINTERPRET 6.022		5.00	5/30	/2013, 3:05:47 PN	1				

ame	Color	or Unit Weight (lbs/ft3) Strength Type		Cohesion (psf)	Phi (deg)	Water Surface	Ru
1		120	Mohr-Coulomb	0	28	None	0

 80
 100
 120
 140
 160
 180
 200

 Napa River - Ovok Reach

 230

 Company

 File Name

 Slope 2-1 - Low GW - Phi 28.slim

Strength Type	Cohesion (psf)	Phi (deg)	Water Surface	Ru
Mohr-Coulomb	0	32	None	0

180	200	220	240
Slope 2-1 - Low GW -	Phi 32.slim		

20 . 30 . 40 . 50 . 80 . 90	Safety Factor 0.000 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 2.250 2.500 2.750 3.000 3.250 3.500 4.000 4.250 4.500 4.750 5.000 5.250 5.750 6.000+									
10	- - - - - - - - - - -		Material Name	Color	Unit Weight (lbs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Water Surface	Ru
-	- - - - - - - -		Material 1		120	Mohr-Coulomb	0	28	None	0
0	 	-10	0 <u>10</u>	20	30 <u>4</u> 0	50 <u>6</u> 0	70		90	
	۸ ۲		Project				Napa R	iver - Ovok	Reach	

5/30/2013, 3:05:47 PM

Date

SI IDEINTERPRET 6 022	
SEIDEINTERFRET 0.022	

File Name

	Safety	Factor 0.000 0.250																			
20 60 70 80 80 90		0.500 0.750 1.000 1.250 1.500 1.750 2.000 2.250 2.500 2.750 3.000 3.250 3.500 3.750 4.000 4.250 4.500 4.500 4.500 5.000 5.250 5.500 5.750 6.000+													4.177	1.9	952				
-																KIRKE KING					
-40 -	-												/								
	-											L									
-	-									and the second distances of the second distances of the second distances of the second distances of the second	and the second se										
30					0					COMPANY OF THE OWNER											
20																					
-	-					Material	Name	Color	Unit Weight (lbs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Water Surface	Ru							
10	-					Materi	al 1		120	Mohr-Coulomb	0	32	None	0							
					_																
	-30	-20		-10	0	۱ · · · · · · ۱ · · · 1	0	1	20	30 40)	50		60		70	8	0	90	100	
		Δ ?	20] =	(Pri	roject									Napa	River	- Ovok Read	ch	
	4						Ar. Dr	nalysis Desc rawn By	cription						Scale		1.140		Company		
SLID	EINTERPRET 6.022		UCONS	ULIANT	5		Da	ate			5/30/201	3, 3:05	:47 PM				1:140		File Name		
							· · · ·					-									

ght)	Strength Type	Cohesion (psf)	Phi (deg)	Water Surface	Ru
	Mohr-Coulomb	0	28	None	0

Slope 3-1 - Low GW - Phi 28.slim

orrengtn Type	(psf)	(deg)	Surface	кu	
1ohr-Coulomb	0	32	None	0	
				_	
200	220	24	0	260	-1
Slope 3-1 - Low GV	V - Phi 32.slim				

trength Type	Cohesion (psf)	Phi (deg)	Water Surface	Ru
1ohr-Coulomb	0	32	None	0

Appendix D

Liquefaction Analyses Results

TABLE 1 - LIQUEFACTION ANALYSIS

Napa River Restoration - OVOK Reach - Sites 14-29 A3GEO, Inc. Project No. 1110-3A 5/30/2013 Columns bioblighted in blue must be entered depending upon sit

Columns highlighted in blue must be entered depending upon site specific conditions.

 $C_{R=}$ Correction Factor for Rod Length; 10-13' = 0.75; 13-20' = 0.85; 20-33' = 0.95; 33-99' = 1.0

 C_{s} = Correction Factor for Sampling Method; SPT Sampler without liners = 1.2; Modified California Sampler = 0.63

 C_{B} = Correction Factor for Borehole Diameter; For Hollow Stem, use ID.; 2.5-4.5" = 1.0; 5.9" = 1.05; 7.9" = 1.15

 C_{E} . Correction Factor for Hammer Energy Ratio; Automatic Trip Hammer = 1.2, Rope and Cathead = 1.0

C_N - Correction Factor for Overburden Pressure

Design $M_w =$	7.0	
water table =	8.0	ft below ground surface

			Youd, 2001																l okimat	u and S	eed (1987)											
				Unified																												
	Top of	Bottom of	Sample	Soil	Layer	%																										Settlement
Boring	Laver (ft)	Layer (ft)	Depth (ft)	Class.	Thickness	Fines	Ν	C.	C。	C	C₌	Neo	Υm	σ.,	σ.'	См	N1 60		N1 6000		Rn	amay	(Tmax)r	CSR MW	MSF	CSR M-75		FS	Lig	N1 60 cc	E (%)	(in)
B-14-1	8	14	11	SC	6	13	26	0.75	1.20	1.00	1.00	23	125	1375	1188	1.33	31		34		0.98	0.42	564	0.309	1.19	0.259			no	34	-	-
B-14-2	13	16.5	14.75	ML	3.5	60	20	0.85	1.00	1.00	1.00	17	125	1844	1423	1.22	20			29	0.97	0.42	750	0.343	1.19	0.287	0.410	1.427	no	29	-	-
B-17-1	15	16.5	15.75	SC	1.5	13	21	0.85	1.00	1.00	1.00	18	125	1969	1485	1.19	21		24		0.97	0.42	800	0.350	1.19	0.293	0.268	0.912	ves	24	1.2	0.22
B-17-2	8	14	11	SC	6	13	23	0.75	1.00	1.00	1.00	17	125	1375	1188	1.33	23		26		0.98	0.42	564	0.309	1.19	0.259	0.307	1.187	no	26	-	-
B-17-2	20.5	25	22.75	SM	4.5	13	8	0.95	1.20	1.00	1.00	9	125	2844	1923	1.05	9		11		0.95	0.42	1134	0.383	1.19	0.321	0.124	0.386	yes	11	2.5	1.35
B-17-4	13.5	18.5	16	SC/GC	5	28	28	0.85	1.00	1.00	1.00	24	125	2000	1501	1.19	28		36		0.97	0.42	812	0.352	1.19	0.295			no	36	-	-
<u>B-17-5</u>	16.5	23.5	20	SM/GC	7	13	19	0.95	1.00	1.00	1.00	18	125	2500	1751	1.10	19		22		0.96	0.42	1005	0.373	1.19	0.313	0.236	0.756	yes	22	1.4	1.18
<u>B-17-7</u>	12	18	15	SM	6	13	17	0.85	1.00	1.00	1.00	14	125	1875	1438	1.21	17		20		0.97	0.42	763	0.345	1.19	0.289	0.209	0.725	yes	20	1.5	1.08
<u>B-18-2</u>	15	20	17.5	SC	5	13	15	0.85	1.20	1.00	1.00	15	125	2188	1595	1.15	17		20		0.96	0.42	885	0.361	1.19	0.302	0.209	0.693	yes	20	1.5	0.90
B-18-2	20	23.5	21.75	SC	3.5	13	29	0.95	1.20	1.00	1.00	33	125	2719	1861	1.07	35		38		0.95	0.42	1087	0.380	1.19	0.318			no	38	-	-
<u>B-18-3</u>	11.5	20	15.75	GC/SM	8.5	13	11	0.85	1.00	1.00	1.00	9	125	1969	1485	1.19	11		13		0.97	0.42	800	0.350	1.19	0.293	0.143	0.489	yes	13	2.2	2.24
<u>B-18-3</u>	23.5	26.5	25	SM	3	13	15	0.95	1.00	1.00	1.00	14	125	3125	2064	1.01	14		16		0.94	0.42	1236	0.389	1.19	0.326	0.174	0.535	yes	16	1.9	0.68
<u>B-18-4</u>	18	23	20.5	SM	5	13	7	0.95	1.00	1.00	1.00	7	126	2583	1803	1.08	7		9		0.96	0.42	1037	0.374	1.19	0.313	0.106	0.337	yes	9	2.8	1.68
<u>B-18-4</u>	23	26.5	24.75	GP	3.5	4	18	0.95	1.20	1.00	1.00	21	125	3094	2049	1.02	20	20			0.94	0.42	1225	0.389	1.19	0.326	0.215	0.661	yes	20	1.5	0.63
B-18-7	10	11.5	10.75	SC	1.5	13	28	0.75	1.00	1.00	1.00	21	125	1344	1172	1.34	28		31		0.98	0.42	552	0.306	1.19	0.256			no	31	-	-
<u>B-18-8</u>	8	11.5	9.75	ML	3.5	60	12	0.75	1.00	1.00	1.00	9	125	1219	1110	1.38	12			19	0.98	0.42	501	0.294	1.19	0.246	0.208	0.845	yes	19	1.6	0.67
B-19-1	11	18	14.5	SC/GC	/	13	18	0.85	1.20	1.00	1.00	18	125	1813	1407	1.23	22		25		0.97	0.42	738	0.341	1.19	0.286	0.286	1.001	no	25	-	-
B-19-2	8	10	9	SC	2	13	17	0.75	1.00	1.00	1.00	13	125	1125	1063	1.41	17		20		0.98	0.42	464	0.284	1.19	0.238	0.209	0.881	yes	20	1.5	0.36
B-22-4	9.5	13	11.25	GC	3.5	13	14	0.75	1.20	1.00	1.00	13	125	1406	1203	1.33	16		18		0.98	0.42	5//	0.312	1.19	0.261	0.197	0.755	yes	18	1.7	0.71
B-22-4	13	10.0	14.75	SU	3.0	13	10	0.85	1.00	1.00	1.00	14	125	1044	1423	1.22	10		20		0.97	0.42	700	0.343	1.19	0.287	0.209	0.729	yes	20	1.5	0.84
B-264-1	20	21.25	20.625	SM	1 25	13	8	0.75	1.00	1.00	1.00	14 8	125	2578	1700	1.00	10 8		10		0.90	0.42	103/	0.303	1.19	0.234	0.222	0.875	yes ves	10	2.6	0.84
B-26B-1	8	20.75	14 375	SP/SM	12 75	10	19	0.85	1.00	1.00	1.00	16	125	1797	1390	1.03	19		20		0.30	0.42	732	0.340	1.19	0.285	0.115	0.304	Ves	20	15	2.30
B-26B-1	20.75	21.5	21 125	GP	0.75	4	15	0.95	1.00	1.00	1.00	14	125	2641	1822	1.20	15	15			0.95	0.42	1058	0.377	1.19	0.316	0.160	0.506	Ves	15	2.0	0.18
B-26C-1	8	14	11	SM	6	13	21	0.75	1.00	1.00	1.00	16	125	1375	1188	1.33	21		24		0.98	0.42	564	0.309	1.19	0.259	0.268	1.034	no	24	-	-
B-26C-1	14	19	16.5	SW	5	4	9	0.85	1.00	1.00	1.00	8	125	2063	1532	1.18	8	8			0.97	0.42	836	0.355	1.19	0.297	0.096	0.323	Ves	8	3.0	1.80
B-26C-1	19	24	21.5	SP	5	4	4	0.95	1.00	1.00	1.00	4	125	2688	1845	1.07	4	4			0.95	0.42	1076	0.379	1.19	0.318	0.065	0.204	ves	4	4.7	2.82
B-26C-1	24	26.5	25.25	GP	2.5	4	16	0.95	1.00	1.00	1.00	15	125	3156	2080	1.01	15	15			0.94	0.42	1247	0.390	1.19	0.327	0.160	0.490	yes	15	2.0	0.60
B-27-1	9	13	11	SM	4	13	13	0.75	1.00	1.00	1.00	10	125	1375	1188	1.33	13		15		0.98	0.42	564	0.309	1.19	0.259	0.164	0.633	yes	15	2.0	0.96
B-27-1	13	20	16.5	GW	7	4	12	0.85	1.00	1.00	1.00	10	125	2063	1532	1.18	11	11			0.97	0.42	836	0.355	1.19	0.297	0.122	0.410	yes	11	2.5	2.10
B-28-1	8	15	11.5	SW-SM	7	4	14	0.75	1.00	1.00	1.00	11	125	1438	1219	1.32	13	13			0.98	0.42	589	0.314	1.19	0.263	0.141	0.534	yes	13	2.2	1.85
<u>B-28-1</u>	15	20	17.5	SP-SC	5	10	11	0.85	1.00	1.00	1.00	9	125	2188	1595	1.15	10		11		0.96	0.42	885	0.361	1.19	0.302	0.123	0.406	yes	11	2.5	1.50
<u>B-28-1</u>	20	21.5	20.75	SP	1.5	4	20	0.95	1.00	1.00	1.00	19	125	2594	1798	1.08	20	20			0.95	0.42	1040	0.376	1.19	0.315	0.215	0.683	yes	20	1.5	0.27
B-29-2	16.5	25	20.75	SC	8.5	13	24	0.95	1.00	1.00	1.00	23	125	2594	1798	1.08	24		27		0.95	0.42	1040	0.376	1.19	0.315	0.332	1.054	no	27	-	-
B-29-3	8	11.5	9.75	SC	3.5	13	21	0.75	1.00	1.00	1.00	16	125	1219	1110	1.38	21		24		0.98	0.42	501	0.294	1.19	0.246	0.268	1.087	no	24	-	-
B-29-3	11.5	19	15.25	SC	7.5	13	28	0.85	1.00	1.00	1.00	24	125	1906	1454	1.21	28		31		0.97	0.42	775	0.346	1.19	0.291			no	31	-	-

Appendix E

Site Specific Evaluations and

Recommendations

If additional site-specific evaluations are required, supplemental recommendations will be incorporated in Appendix E.