NAPA RIVER RUTHERFORD REACH RESTORATION PROJECT

2011 MONITORING REPORT

Appendices Monitoring Studies and Project Summaries

August 31, 2011

Prepared by:

Tessera Consulting 6549 Willowview Court Livermore, CA 94551 Contact: Gretchen E. Hayes (925)455-4489

Napa County Flood Control and Water Conservation District 804 First Street Napa, CA 94559 Correspondence/Contact: Richard Thomasser (707)259-8657

Napa County Resource Conservation District 1303 Jefferson St. Suite 500 B Napa, CA 94558 Correspondence/Contact: Leigh Sharp (707) 252-4188 x110

In Concert with:

Table of Contents

- A. REGULATORY PERMIT SUMMARY
- **B. RESTORATION REACHES, PHASES, AND CONSTRUCTION SCHEDULE**
- **C. RESTORATION ELEMENTS**
- **D. MONITORING STUDIES**
 - I. STREAM FLOW MEASUREMENTS
 - **II. ERODING STREAMBANK SURVEY**
 - **III. SEDIMENT SOURCE REDUCTION CALCULATIONS**
 - IV. LONGITUDINAL PROFILE THALWEG SURVEYS
 - **V. CHANNEL TRANSECT SURVEYS**
 - **VI. PEBBLE COUNTS**
 - **VII. SPAWNING GRAVEL PERMEABILITY**
 - VIII. CHANNEL MORPHOLOGY SURVEY
 - IX. RESIDUAL POOL DEPTH ASSOCIATED WITH INSTALLED INSTREAM HABITAT STRUCTURES
 - X. LARGE WOODY DEBRIS SURVEYS
 - XI. SEASONAL SALMONID HABITAT SURVEYS
 - **XII. VEGETATION ESTABLISHMENT SURVEYS**
 - XIII. STAKEHOLDER PARTICIPATION DOCUMENTATION
 - **XIV. PHOTOMONITORING**

A. Regulatory Permit Summary

Permitting Agency Agency Contact		Permit Number	Permit Expiration
	Permits Obtained for En	ntire Project	
U.S. Army Corps of Engineers (Corps),	Sahrye Cohen	2008-00366N	July 20, 2019
San Francisco District	(415) 503-6779	Covers entire project	Extension may be
1455 Market Street	sahrye.e.cohen@usace.army.mil		granted if requested at
San Francisco CA 94103-1398			least one month before
			expiration date
U.S. Fish and Wildlife Service (USFWS	Ben Solvesky, ben_solvesky@fws.gov	81420-2009-F-0266-1	Expires upon completion
or Service), Sacramento Office	Ryan Olah, ryan_olah@fws.gov	Biological Opinion for entire project:	of the project
2800 Cottage Way, Room W-2605	(916) 414-6600	California freshwater shrimp	
Sacramento CA 95825-1846		California red-legged frog	
NOAA-NMFS, Southwest Region	Joshua Fuller	Tracking Number 2008/08010	2019
325 Sonoma Avenue, Room 325	25 Sonoma Avenue, Room 325 (707) 575-6096		
Santa Rosa CA 95404-6515	Joshua.fuller@noaa.gov	Central California Coast steelhead	
	Permits Obtained by Implen	nentation Phase	
		Phase 1: Reaches 1 and 2	2019
		Site No. 02-28-C0338	
San Francisco Bay Pogional Water		CIWQS Place No. 735511	
Quality Control Poord (DMOCP)	Ann Riley	Phase 2: Reach 3	2020
1515 Clay Street Suite 1400	(510) 622-2420	Site No. 02-28-C0338	
Ω_{2}	alriley@waterboards.ca.gov	CIWQS Place No. 735511	
		Phase 3: Reach 4	2021
		Site No. 02-28-C0377	
		CIWQS Place No. 763994	
		Phase 1: Reaches 1 and 2Notification	December 31, 2013
California Department of Fish and	Suganna Cilmora	No. 1600-2009-0206-3	
Game (DFG), Bay Delta Region	(707) 044 EE26	Phase 2: Reach 3	December 31, 2014
PO Box 47 Yountville CA 94599	(707) 944-3330 Sailmoro@dfa.co.gov	Notification No. 1600-2010-0021-R3	
7329 Silverado Trail Napa CA 94558	Seminoreeuig.ca.gov	Phase 3: Reach 4	December 31, 2014
		Notification No. 1600-2011-0036-R3	

Regulatory Permit Summary

Jill Sunahara, Horizon Water and Environment 2011

B. Restoration Reaches, Phases, and Construction Schedule

Restoration Reaches, Phases, and Construction Schedule

The Rutherford Reach of the Napa River spans between river stations 0 and 24,857, starting at the Oakville Cross Road Bridge and extending upstream to the Zinfandel Lane Bridge. As of the writing of this document, the anticipated schedule for the construction of the Napa River Rutherford Reach Restoration Project is as follows:

Construction Phase	Reaches	River Stations	Year
Zinfandel Lane Bridge	Upstream Limit Project Reach	24,857	
Phase 1-East Bank	Reach 1 and 2	24,857 - 18,600	2009
Phase 1-West Bank	Reach 1 and 2	24,857 - 18,600	2010
Phase 2	Reach 3	18,600 - 16,000	2010
Phase 3-East Bank	Reach 4	16,000 - 12,000	2011
Phase 3-West Bank	Reach 4	16,000 - 12,000	2012
Rutherford Cross Road Bridge	Middle of Project Reach	12,000	
Phase 4	Reach 8	7,800 - 3,400	2012 - 2013
Phase 5	Reach 9	3,400 - 0	2014
Phase 6	Reach 5	12,000 - 11,000	2015
Phase 6	Reach 6	11,000 – 9,200	2015
Phase 6	Reach 7	9,200 - 7,800	2015
Oakville Cross Road Bridge	Downstream Limit Project Reach	0	

C. Restoration Elements

Restoration Element Maps

Restoration Elements: Graded Habitat Features

				Upstream		Channel	Channel			Total Bank	Treated Bank	Total Bank	Treated
	Graded Structure			River	Downstream	Length by	Length	Project	Treated Bank	Length by	Length	Length	Banks
Year	by Project Phase	Rutherford Subreach	Designer / Bank	Station	River Station	Phase	Cumulative	Completion	Length by Phase	Phase	Cumulative	Cumulative	Cumulative
				(feet)	(feet)	(feet)	(feet)	(%)	(feet)	(feet)	(feet)	(feet)	(%)
2009	Phase 1a	Reaches 1-2 East Bank	ICF JAS, RSA	24,857	18,000	6,857	6,857	28%	1,900	13,714	1,900	13,714	14%
	Bench	Guggenhime	Left / East	23,950	23,450				500				
	Bench	Quintessa	Left / East	20,000	19,400				600				
	Bank Stabilization	Quintessa	Left / East	19,400	18,600				800				
2010	Phase 1b	Reaches 1-2 West Bank	ICF JAS, NHC	24,857	18,000	6,857	6,857	28%	1,975	13,714	3,875	13,714	28%
	Alcove	Ranch Winery/Sutter Home	Right / West	22,225	21,875				350				
	Bench	Ranch Winery/Sutter Home	Right / West	21,875	21,625				250				
	Bench	Frogs Leap	Right / West	19,900	19,100				800				
	Bench	Caymus	Right / West	18,600	18,025				575				
2010	Phase 2	Reaches 1-3	ESA PWA	18,600	16,000	2,600	9,457	38%	1,265	5,200	5,140	18,914	27%
	Bench 1	Caymus	Right / West	17,700	17,425				275				
	Bench 2	Caymus	Right / West	17,350	17,160				190				
	Bench 3	Caymus	Right / West	17,150	16,850				300				
	Bench 4	Carpy Conolly	Left / East	16,725	16,475				250				
	Bench 5	Carpy Conolly	Left / East	16,350	16,100				250				
2011	Phase 3a	Reach 4 East Bank	ESA PWA	16,000	12,000	4,000	13,457	54%	1,249	8,000	6,389	26,914	24%
	Bench 7	Carpy Conolly	Left / East	15,814	15,600				214				
	Bank Stabilization	Carpy Conolly	Left / East	14,450	14,300				150				
	Bank Stabilization	Honig	Left / East	13,925	13,800				125				
	Bench 11	Honig	Left / East	13,685	13,450				235				
	Bench 13	Honig	Left / East	13,150	12,775				375				
	Bench 14	Round Pond East	Left / East	12,575	12,425				150				
2012	Phase 3b	Reach 4 West Bank	ESA PWA	16,000	12,000	4,000	13,457	54%	1,330	8,000	7,719	26,914	29%
	Bench 6	Emmolo	Right / West	16,125	15,800				325				
	Bench 8	Emmolo	Right / West	15,275	15,075				200				
	Bench 9	Mee	Right / West	14,015	14,085				(70)				
	Bench 10	Mee	Right / West	13,915	13,500				415				
	Bench 12	Round Pond West	Right / West	13,300	13,100				200				
	Bank Stabilization	Round Pond West	Right / West	12,800	12,540				260				
2012 & After	Phase 4	Reach 8	ESA PWA	7,800	3,400	4,400	17,857	72%	5,025	8,800	12,744	35,714	36%
	Tributary	Sawyer	Right / West	7,725									
	Bench 1	Sawyer	Right / West	7,700	7,300				400				
	Bench 2	Wilsey	Left / East	7,100	6,400				700				
	Bank Stablization 1	Wilsey	Left / East	6,250	5,800				450				
	Bank Stabilization	Sequoia Grove	Right / West	7,050	6,525				525				
	Bench 3	Davis	Right / West	6,475	5,900				575				
	Bench 4	Gmelch / Laird	Left / East	5,400	4,800				600				
	Bank Stablization 2	Glos	Right / West	4,750	4,350				400				
	Bench 5	Laird	Left / East	4,525	4,475				50				
	Bench 6	Laird	Left / East	4,300	3,900				400				
	Bench 7	Laird	Left / East	3,675	3,250				425				
	Tributary Alcove	Cakebread	Right / West	3,750	3,400				350				
	Tributary Alcove	Nickel & Nickel	Right / West	3,400	3,250				150				
	Project	Reaches 1 - 9		24,857	0		24,857				12,744	49,714	26%

Restoration Elements: Instream Habitat Structures

								US Station	DS Station
								Associated	Associated
	Instream Habitat Structure by			US River	DS River			Graded	Graded
Year	Phase	Rutherford Subreach	Designer / B	Bank Station	Station	Label ID	Associated Graded Structure or Nickname	Structure	Structure
				(feet)	(feet)				
2009	Phase 1a	Reaches 1-2 East Bank	ICF JAS, RS	SA 24,857	18,000				
2009	Bench Log	Guggenhime	Left / Eas	st 23,920		WD-23920-L	Guggenhime Bench	23,950	23,450
2009	Bench Log	Guggenhime	Left / Eas	st 23,880		WD-23880-L	Guggenhime Bench	23,950	23,450
2009	Bench Log	Guggenhime	Left / Eas	st 23,830		WD-23830-L	Guggenhime Bench	23,950	23,450
2009	Bench Log	Guggenhime	Left / Eas	st 23,780	18,000	WD-23780-L	Guggenhime Bench	23,950	23,450
2009	Bench Log	Guggenhime	Left / Eas	st 23,730	21,875	WD-23730-L	Guggenhime Bench	23,950	23,450
2009	Bench	Guggenhime	Left / Eas	st 21,875	21,625	WD-23730-L	Guggenhime Bench	23,950	23,450
2009	Bench Log	Guggenhime	Left / Eas	st 23,680		WD-23680-L	Guggenhime Bench	23,950	23,450
2009	Bench Log	Guggenhime	Left / Eas	st 23,620		WD-23620-L	Guggenhime Bench	23,950	23,450
2009	Bench Log	Guggenhime	Left / Eas	st 23,560		WD-23560-L	Guggenhime Bench	23,950	23,450
2009	Bench Log	Quintessa	Left / Eas	st 19,780		WD-19780-L	Quintessa Bench	20,000	19,400
2009	Bench Log	Quintessa	Left / Eas	st 19,730		WD-19730-L	Quintessa Bench	20,000	19,400
2009	Bench Log	Quintessa	Left / Eas	st 19,685		WD-19685-L	Quintessa Bench	20,000	19,400
2009	Bench Log	Quintessa	Left / Eas	st 19,650		WD-19650-L	Quintessa Bench	20,000	19,400
2009	Bench Log	Quintessa	Left / Eas	st 19,610		WD-19610-L	Quintessa Bench	20,000	19,400
2009	Bench Log	Quintessa	Left / Eas	st 19,560		WD-19560-L	Quintessa Bench	20,000	19,400
2009	Bench Log	Quintessa	Left / Eas	st 19,505		WD-19505-L	Quintessa Bench	20,000	19,400
2010	Phase 1b	Reaches 1-2 West Bank	ICF JAS, NI	HC 24,857	18,600				
2010	Alcove Log	Sutter Home/The Ranch	Right / We	est 22,010		WD-22010-R	Ranch Winery / Sutter Home Alcove	22,225	21,900
2010	Alcove Log	Sutter Home/The Ranch	Right / We	est 22,000		WD-22000-R	Ranch Winery / Sutter Home Alcove	22,225	21,900
2010	Alcove Log	Sutter Home/The Ranch	Right / We	est 21,950		WD-21950-R	Ranch Winery / Sutter Home Alcove	22,225	21,900
2010	Alcove Log	Sutter Home/The Ranch	Right / We	est 21,915		WD-21915-R	Ranch Winery / Sutter Home Alcove	22,225	21,900
2010	Alcove Log	Sutter Home/The Ranch	Right / We	est 21,910		WD-21910-R	Ranch Winery / Sutter Home Alcove	22,225	21,900
2010	Alcove Log	Sutter Home/The Ranch	Right / We	est 21,900		WD-21905-R	Ranch Winery / Sutter Home Alcove	22,225	21,900
2010	Spider Log	Sutter Home/The Ranch	Right / We	est 22,100		WD-22100-R	Alcove Spider Log US		
2010	Spider Log	Sutter Home/The Ranch	Left / Eas	st 21,900		WD-21900-L	Alcove Spider Log DS		
2010	Spider Log	Quintessa	Left / Eas	st 21,700		WD-21700-L	Quintessa Spider Log		
2010	Toe Log Structure	Sutter Home/The Ranch	Right / We	est 21,850		WD-21850-R	Ranch Winery Bench Toe Log Structure	21,850	21,800
2010	Bench Log	Sutter Home/The Ranch	Right / We	est 21,710		WD-21710-R	Sutter Home/The Ranch Winery Bench	21,900	21,625
2010	Bench Log	Frogs Leap	Right / We	est 19,650		WD-19650-R	Frog's Leap Bench	19,900	19,100
2010	Bench Log	Frogs Leap	Right / We	est 19,375		WD-19375-R	Frog's Leap Bench	19,900	19,100
2010	Bench Log	Frogs Leap	Right / We	est 19,200		WD-19200-R	Frog's Leap Bench	19,900	19,100
2010	Toe Log Structure	Frogs Leap	Right / We	est 19,525		WD-19525-R	Frog's Leap Bench toe Log Structure	19,525	19,450
2010	Boulder Cluster	Frogs Leap	Mid Chann	nel 18,250		BC-18250	Frog's Leap Bench	19,900	19,100
2010	Bench Log	Caymus	Right / We	est 18,350		WD-18350-R	Caymus Bench	18,600	18,025
2010	Bench Log	Caymus	Right / We	est 18,260		WD-18260-R	Caymus Bench	18,600	18,025
2010	Bench Log	Caymus	Right / We	est 18,175		WD-18175-R	Caymus Bench	18,600	18,025

2010	Phase 2	Reaches 1-3	PWA	18,600	16,000				
2010	Root Wad	Caymus	Right / West	17,700		WD-17700-R	Caymus Bench 1 US	17,700	17,425
2010	Root Wad	Caymus	Right / West	17,425		WD-17425-R	Caymus Bench 1 DS	17,700	17,425
2010	Secondary Channel	Caymus	Right / West	17,600			Caymus Bench 1	17,700	17,425
2010	Root Wad	Caymus	Right / West	17,175		WD-17175-R	Caymus Bench 2 DS	17,350	17,160
2010	Backwater Alcove	Caymus	Right / West	17,300			Caymus Bench 2	17,350	17,160
2010	Root Wad	Caymus	Right / West	16,900		WD-16900-R	Caymus Bench 3 DS	17,150	16,850
2010	Root Wad	Carpy-Conolly	Left / East	16,100		WD-16100-L	Carpy Conolly Bench 5 DS	16,350	16,100
2010	Buried Grade Control Structure	Carpy-Conolly				R-16165-MID	Carpy Conolly Bench 5	16,180	16,150

Restoration Elements on Longitudinal Profile

D. Monitoring Studies

Monitoring Parameter Protocols, References, and Frequency by Category Table Sediment Load Reductions and Channel Morphology

Monitoring Parameter	Protocols	Reference Sources	Frequency
Sediment Delivery to the	Mapping and Measurement of	Gerstein and Harris	Annually
Channel: Length and	Height and Length of Actively	(2005) Harrelson et	
Height (Surface Area) of	Eroding Streambanks,	al. (1994)	
Actively Eroding Banks	Photodocumentation	Nossaman et al.	
(Failing graded slopes,		(2007)	
mass wasting, slumps,			
flows, etc)			
Channel Adjustment /	Cross Section Transects,	Flosi et al / CDFG.	Pre-and Post-Construction, and/or Post Significant Channel
Incision:	Local Longitudinal Thalweg Survey,	(1998)	Forming Event
Bed Deposition or Scour in	Photodocumentation	Gerstein (2005)	
Control Versus Treated		Harrelson et al (1994)	
Reaches		Gerstein (2005)	
		Harrelson et al (1994)	
Bankfull Width to Depth	Cross Section Transects	Fitzpatrick et al	Pre-and Post-Construction, and/or Post Significant Channel
Ratio: Entrenchment		(1998)	Forming Event
		Rosgen (1996)	
Flood Stage / High Water	Cross Section Transects	Fitzpatrick et al	Pre-and Post-Construction, and/or Post Significant Channel
Mark		(1998)	Forming Event
Bank Stability	Cross Section Transects	Gerstein and Harris	Pre-and Post-Construction, and/or Post Significant Channel
(Rates of Widening at		(2005)	Forming Event
reference vs. restored		Nossaman et al.	
cross sections)		(2007)	
Channel Planform Network	Photodocumentation of	Fitzpatrick et al	Post Significant Channel Forming Event; As Available
(Primary and Secondary	Constructed Alcoves	(1998)	
Channels)	Air Photo Analysis (As Available)		

Aquatic Habitat

Monitoring Parameter	Reference Sources	Protocols	Frequency
Large Woody Debris Logs and	Gerstein (2005)	Mapping and Categorization of LWD	Annually
Jams (>12 inch diameter, or	Flosi et al / CDFG. (1998)	by geomorphic unit, salmonid habitat	
clump of >4 pieces)		function, and risk to bank stability;	
		Photodocumentation	
Channel Geomorphic		Mapping of Riffle Crests with GPS	Annually
Heterogeneity: Riffle Habitat			
Frequency and Distribution			
Installed Habitat Structure	Lisle (1987)	Measurement of Residual Pool Depth	Annually
(LWD/Boulder/Other)		at Locations of Installed Habitat	
Affect on Increasing Pool Depth		Structures (LWD/Boulder/Other)	
and Habitat Complexity			
Installed Habitat Structure	Lisle (1987)	Evaluation of Persistence and Status	Annually
Persistence		at Locations of Installed Habitat	
(LWD/Boulder/Other)		Structures	
Areas requiring trash removal		Mapping,Photodocumentation	Annually
Channel Geomorphic	Flosi et al / CDFG (1998)	Cross Section Transects,Local	Pre-and Post-Construction,
Heterogeneity: Riffle, Pool and	Gerstein (2005)	Longitudinal Thalweg Survey or	and Post Significant Channel
Glide Habitat Distribution	Harrelson et al. (1994);	Habitat Unit Mapping at Locations of	Forming Event
	USDA R-5s Bulletin Number	Installed Structures.	
	One		
Spawning Gravel Recruitment:	Bunte & Abt (2001)	Modified Wolman Pebble Count,	Pre-and Post-Construction,
Channel Substrate Size	Cover et al (2008)	and/or Grid Pebble Count at Riffle	and Post Significant Channel
Distribution / Riffle Median Grain	Fitzpatrick et al (1998)	Crests near Cross Section Transects	Forming Event
Size (D50)	USDA (2003)		
	Wolman (1954)		
Area of Low Velocity High Flow	USDA (2003)	Habitat Unit Mapping and/or Sketch of	Representational Seasonal
Refugia Within Bankfull at	Gerstein (2005)	River Flow Pattern; Description of	River Flow Stages (Winter
Constructed Alcoves and	Flosi et al / CDFG. (1998)	Restoration Feature Affect on River	and Spring)
Bankfull Benches	Fisheries Biologist Expert	Photodocumentation: Velocity Flow	
	Opinion	Measurements in Constructed High	
		Flow Refugia Habitat	

Riparian Habitat

Monitoring Parameter	Protocols	Reference Sources	Frequency
Areas requiring weed	Mapping,	Harris (1999, 2005)	Annually
control, including	Photodocumentation,	Herrick et al (2005 a)	
infestations of Pierce's	Land Owner Request Forms	Interagency Technical	
disease host species		Reference (1996)	
Areas requiring trash	Mapping,		Annually
removal	Photodocumentation		
Riparian Vegetation	Cross Section Transects,	Harris (1999, 2005)	Pre-and Post-Construction, and/or Post Significant
Buffer Width	Vegetation Surveys		Channel Forming Event
	Air Photo Analysis (As		
	Available)		
Riparian Vegetation	As Built Surveys	Harris (1999, 2005)	Post Construction
Buffer Width for first five	Air Photo Analysis (As		
years after planting	Available)		
Number of Pierce	Area Mapping Vegetation	Herrick et al (2005 a)	Establishment Years, 1,2,3 by contractor; Years 5 and 7
Disease Host Plant	Survey;	Interagency	by Maintenance Assessment District
Infestations for first five	Direct Count Vegetation	Technical Reference	
years after planting	Survey; Photodocumontation	(1996)	
Restoration Planting	Cross Section Transect	Nossaman et al	Establishment Years 1 2 3 by contractor: Years 5 and 7
Survival (80% in first five	Vegetation Survey:	(2007)	by Maintenance Assessment District
vears after planting)	Direct Count Vegetation	Harris (1999, 2005)	by Mantonanoo Abboominin District
years aller planting)	Survey: Photodocumentation	Gaffney (2008)	
	Survey, Thorouocumentation	Canney (2000)	

Stakeholder Participation

Monitoring Parameter	Protocols	Reference Sources	Frequency
Landowner participation	Landowner maintenance	FISRWP (2001)	As Events Occur
in adaptive monitoring	requests and access		
and management	agreements		
Landowner Advisory	Meeting minutes; Surveys of	FISRWP (2001)	As Events Occur
Committee (LAC)	participation; Opinion surveys		
participation	of effectiveness		

Monitoring Parameter Protocols, References, and Category by Frequency Table

Annual Stream Reach Survey

Monitoring Parameter	Protocols	Reference Sources	Category
Sediment Delivery to the Channel: Length and Height (Surface Area) of Actively Eroding Banks (Failing graded slopes, mass wasting, slumps, flows, etc)	Mapping and Measurement of Height and Length of Actively Eroding Streambanks, Photodocumentation	Gerstein and Harris (2005) Harrelson et al. (1994) Nossaman et al. (2007)	Sediment Load Reductions & Channel Morphology
Large Woody Debris Logs and Jams (>12 inch diameter, or clump of >4 pieces)	Mapping and Categorization of LWD by geomorphic unit, salmonid habitat function, and risk to bank stability; Photodocumentation	Gerstein (2005) Flosi et al / CDFG. (1998)	Aquatic Habitat Quality
Channel Geomorphic Heterogeneity: Riffle Habitat Frequency and Distribution	Mapping of Riffle Crests with GPS		Aquatic Habitat Quality
Installed Habitat Structure (LWD/Boulder/Other) Affect on Increasing Pool Depth and Habitat Complexity: Residual Pool Depth (Change in Pool Storage of Fines)	Measurement of Residual Pool Depth at Locations of Installed Habitat Structures (LWD/Boulder/Other)	Lisle (1987)	Aquatic Habitat Quality
Installed Habitat Structure Persistence (LWD/Boulder/Other)	Evaluation of Persistence and Status at Locations of Installed Habitat Structures	Lisle (1987)	Aquatic Habitat Quality
Areas requiring weed control, including infestations of Pierce's disease host species	Mapping, Photodocumentation, Land Owner Request Forms	Harris (1999, 2005) Herrick et al (2005 a) Interagency Technical Reference (1996)	Riparian / Floodplain Habitat Quality
Areas requiring trash removal	Mapping, Photodocumentation		Aquatic & Riparian Habitat Quality

Repeat Channel Transect Surveys and Local Longitudinal Profiles

Monitoring Parameter	Protocols	Reference Sources	Category
Channel Adjustment:	Cross Section Transects,	Flosi et al / CDFG. (1998)	Sediment Load Reductions &
Bed Deposition or	Local Longitudinal Thalweg Survey,	Gerstein (2005)	Channel Morphology
Scour in Control	Photodocumentation	Harrelson et al (1994)	
Versus Treated		Gerstein (2005)	
Reaches		Harrelson et al (1994)	
Bankfull Width to	Cross Section Transects	Fitzpatrick et al (1998)	Sediment Load Reductions &
Depth Ratio:		Rosgen (1996)	Channel Morphology
Entrenchment			
Flood Stage / High	Cross Section Transects	Fitzpatrick et al (1998)	Sediment Load Reductions &
Water Mark			Channel Morphology
Book Stability	Cross Section Transacto	Caratain and Harria	Sediment Lond Deductions 8
(Potop of Widening of	Closs Section Hansects		Channel Morphology
reference vs. restored		(2003)	enamer merphology
cross sections)		Nossaman et al. (2007)	
Channel Planform	Photodocumontation of Constructed Alcoves	Fitzpatrick at al (1008)	Sodimont Lood Poductions 8
Network (Primary and	Local Longitudinal Thalweg Profile: Velocity Profile:	Fitzpatrick et al (1996)	Channel Morphology
Secondary Channels)	Photodocumentation		Channel Molphology
····,	Air Photo Analysis (As Available)		
Channel Geomorphic	Cross Section Transects,	Flosi et al / CDFG (1998)	Pre-and Post-Construction, and
Heterogeneity: Riffle,	Local Longitudinal Thalweg Survey or Habitat Unit	Gerstein (2005)	Post Significant Channel Forming
Pool and Glide	Mapping at Locations of Installed Structures.	Harrelson et al. (1994);	Event
Habitat Distribution		USDA R-5s Bulletin	
		Number One	
Spawning Gravel	Modified Wolman Pebble Count, and/or Grid	Bunte & Abt (2001)	Aquatic Habitat Quality
Substrate Size	Transacts	Fitzpatrick et al (1998)	
Distribution / Riffle		USDA (2003)	
Median Grain Size		Wolman (1954)	
(D50)			
Riparian Vegetation	Cross Section Transects,	Harris (1999, 2005)	Riparian / Floodplain Habitat
Butfer Width	Vegetation Surveys		Quality
	Air Photo Analysis (As Available)		

Seasonal Aquatic Habitat Surveys of Constructed Alcoves and Bankfull Instream Benches

Monitoring Parameter	Protocols	Reference Sources	Category
Area of Low Velocity High Flow Refugia Within Bankfull at Constructed Alcoves and Bankfull Benches	Habitat Unit Mapping and/or Sketch of River Flow Pattern; Narrative Description of Restoration Feature Affect on River Flow Pattern and Relative Velocity; Photodocumentation; Velocity Flow Measurements in Accessible Areas of High Flow Refugia Habitat in Constructed Alcoves and Bankfull Benches	USDA (2003) Gerstein (2005) Flosi et al / CDFG. (1998) Fisheries Biologist Expert Opinion	Aquatic Habitat Quality

Phased Vegetation Establishment Years 1,2,3,5 and 7

Monitoring Parameter	Protocols	Reference Sources	Category
Riparian Vegetation	As built suvey;	Harris (1999, 2005)	Riparian / Floodplain Habitat Quality
Buffer Width for first	Air Photo Analysis (As Available)		
five years after			
planting			
Number of Pierce	Area Mapping Vegetation Survey;	Herrick et al (2005 a)	Riparian / Floodplain Habitat Quality
Disease Host Plant	Direct Count Vegetation Survey;	Interagency	
Infestations for first	Photodocumentation	Lechnical Reference	
five years after		(1996)	
Planting Destaration Planting	Cross Section Transact Vagetation	Necessary et al	Dinarian / Elandalain Habitat Quality
Survival (80% in first		Nossaman et al.	Ripanan / Floouplain Habitat Quality
Survival (00% III IIISt	Survey;	(2007)	
nive years after	Direct Count Vegetation Survey;	Harris (1999, 2005)	
planting)	Photodocumentation	Gaffney (2008)	

As Air Photos Become Available

Monitoring Parameter	Protocols	Reference Sources	Category
Channel Planform	Photodocumentation of	Fitzpatrick et al (1998)	Stream Channel Geometry, Capacity, & Stability
Network (Primary and	Constructed Alcoves		
Secondary Channels)	Air Photo Analysis		
Riparian Vegetation	Cross Section Transects,	Harris (1999, 2005)	Riparian / Floodplain Habitat Quality
Buffer Width	Vegetation Surveys		
	Air Photo Analysis		

As Events Occur

Monitoring Parameter	Protocols	Reference Sources	Category
Landowner participation	Landowner maintenance	FISRWP (2001)	Stakeholder Participation
in adaptive monitoring	requests and access		
and management	agreements		
Landowner Advisory	Meeting minutes; Surveys of	FISRWP (2001)	Stakeholder Participation
Committee (LAC)	participation; Opinion surveys		
participation	of effectiveness		

I. Stream Flow Measurements

Stream Flow Measurements

Annual Survey Results

2010

Peak discharge in the winter of 2010 following the first season of project construction in 2009 in Phase 1a, Reaches 1-2 east bank was 2,800 cfs on January 20, 2010. The bankfull instream benches on the Guggenhime and Quintessa properties inundated at the 1.25 year recurrence interval flood.

2011

The Phase 1a benches, and all of the benches constructed in 2010 in Phase 1b, reaches 1-2 West bank, and Phase 2, Reach 3, were inundated several times during the winter of 2011. In 2011the peak winter flood event occurred on March 20, 2011 and was 4,080 cfs, which is between a 1.5 year and 2 year recurrence interval flood.

Annual Peak Flows

Hydrologic Unit Code 18050002	Latitude 38°30'41", Longitude 122°27'17" NAD27
Drainage Area 78.8 square miles	Gage Datum 193.21 feet above NGVD29

$Q_{1.25} = 2,870 \text{ cfs}$ $Q_{1.5} = 3,843 \text{ c}$	s $Q_2 = 5,790 \text{cfs}$	$Q_5 = 10,100 \text{ cfs}$	$Q_{10} = 13,000 \text{ cfs}$	$Q_{100} = 21,000 \text{ cfs}$
--	-----------------------------	----------------------------	-------------------------------	--------------------------------

Water Year	Peak Discharge (cfs)	Peak Discharge Date	Gage Height (feet)
2004	7,760	December 29, 2003	14.92
2005	3,890	March 22, 2005	10.80
2006	18,300	December 31, 2005	23.61
2007	1,350	December 26, 2006	6.87
2008	4,460	January 04, 2008	14.08
2009	2,800	February 22, 2009	11.06
2010	3,950	January 20, 2010	13.31
2011	4,080	March 20, 2011	

2011 High Water Mark and Water Surface Elevations for Velocity Monitoring of High Flow Refugia

	Discharge Napa River									
	Near St. Helena at Pope									
	Street Bridge		Water Surface Elevation (ft NAVD88)							
	(cfs)	Sutter Alcove	Frogs Leap Bench 1	Caymus Bench 0	Caymus Bench 1	Caymus Bench 2	Caymus Bench 3			
River Station		21950	19680	18300	17500	17290	17050			
HWM 2/16/2011	2,930		160.31	157.22	155.94	155.36	154.74			
WSEL 2/16/2011 10:36	1,150	159.96								
WSEL 2/16/2011 11:03	1,120		156.13							
WSEL 2/16/2011 11:22	1,100			152.40						
WSEL 2/16/2011 11:42	1,070				150.18					
WSEL 2/16/2011 12:11	1,030						149.20			
HWM 2/17/2011	3,160	165.38	160.92	157.89	156.81	156.30	155.75			
WSEL 2/23/2011	228	155.52	151.61	148.34	145.49	145.52	144.76			

II. Eroding Streambank Survey

Eroding Streambanks

Annual Results

The Annual Stream Reach Survey is conducted each spring prior to the start of the summer construction season. The reduction of eroding bank length in a given construction phase is evaluated for the first time the following June, after one winter stream flow season.

The target goal is to reduce the surface area of eroding banks in the entire Rutherford Reach (Reaches 1-9) by 75%, which is measured annually under the channel monitoring survey conducted by Napa County each June. Comparison of eroding banks mapped during the first two annual channel maintenance surveys, shows that eroding bank length was reduced in the Rutherford Reach (Reaches 1-9) by 38% from 14,674 to 9,032 feet. Approximately 1,900 feet of this reduction was due to treatment of eroding banks with restoration construction in Phase 1 Reaches 1 and 2 in 2009.

2009

In 2009, 14,674 feet of channel banks were eroding, or 30% of the channel bank length in the Rutherford Reach. A 75% reduction in eroding bank length by 2017 would require that no more than 7.5% of the channel bank length in the Rutherford Reach was eroding. This requires that no more than 3,700 total linear feet of the 49,714 feet of left (east) and right (west) banks are eroding to meet the sediment source reduction goal of the Project.

The baseline survey conducted in June 2009 mapped 14,674 linear feet of eroding banks throughout the Rutherford Reach: 8,538 linear feet on the left (east) bank, and 6,136 feet on the right (west) bank. Eroding bank sections ranged from 20 to 35 feet high. The longest contiguous sections of eroding bank on the right (west) bank spanned 140 feet between stations 21,500 - 21,360 (20 feet high) on the Guggenhime property; and 1,470 feet between stations 5,475 - 4,005 (20 feet high) on the Laird property, and on the left bank spanned 680 feet between stations 12,690 - 12,010 (35 feet high) on the Round Pond West property; and spanned a nearly contiguous stretch of 1,450 feet over three sections between stations 2,680 - 1,230 (feet high) on the Opus One property. The most rapidly eroding section of the river spanned 270 feet between right (east) bank river stations 6900 - 6,630 on the Sequoia Grove property. According to air photo analysis, and field observations since 2004, the 20 foot high bank at Sequoia Grove has been retreating at an average rate of 2 feet per year. This section of the channel is devoid of riparian vegetation buffer and is a high priority for restoration, to curb fine sediment delivery to the stream channel, and because rapid bank collapse is migrating downstream and threatening a residential home on the adjacent Frostfire/Davis (previously Mueller) property.

2010

In June 2010, 9.032 linear feet of eroding banks were mapped throughout the Rutherford Reach: 3,822 linear feet on the left (east) bank, and 5,210 feet on the right (west) bank constituting 18% of the channel bank length in the Rutherford Reach. This constitutes a reduction of 12% compared to the 2009 baseline. A minimum further reduction of 11% in total eroding bank length is required to meet the goals of the project. Eroding bank sections ranged from 10 to 30 feet high.

Eroding Streambanks Chart

Eroding Streambanks Table Linear Feet of Unstable or Potentially Unstable Eroding Banks Table

	2009 Annual Stream Survey	2010 Annual Stream Survey
Rutherford Reach	14,674 feet	9,032 feet

Restoration Project Schematic with 2010 Eroding Banks and Large Woody Debris

III. Sediment Source Reduction Calculations

SEDIMENT SOURCE REDUCTION

Annual Results Summary

2010

Implementation of Phases 1-2 combined will reduce fine sediment loading by 5,337 metric tons/year for twenty years, or 28% of the total target reduction for the Napa River watershed from mainstem channel incision and bank erosion sources.

2011

It is estimated that implementation of Phase 3 restoration will increase the reduction in fine sediment loading to 9,950 metric tons/year, or 52% of the total target sediment reduction on the Napa River.

Annual Results Summary Table

Phase	Phase	Phase	Drainage	Linear	Miles	Cubic	Cubic	Metric Tons	Metric Tons/ Year	Metric Tons/Mile/	TOTAL	RWQCB
	Upstream	Downstream	Area	Feet		Yards	Meters	Cut from	(over 20 years)	Year	ANNUAL	GRTS
	Station	Station	(square			Cut	Cut	Channel	Reduced	(over 20 years)	REDUCTION	Reporting
	(feet)	(feet)	miles)			from	from	Banks (Bulk	Sedimentation	Reduction in Yearly	IN	Year
						Channel	Channel	Density of	due to Cut from	Bank Erosion Rates	SEDIMENT	
						Banks	Banks	1.6 metric	Channel Banks	(Assuming 750	DELIVERY	
								tons/cubic		tons/ mile/year)	TO THE	
								meter)			CHANNEL	
											(Metric	
											tons/year)	
1	24,857	18,600	83	6257	1.19	48,041	36,730	58,768	2,938	889	3,827	2010
2	18,600	16,000	85	2600	0.49	18,639	14,251	22,801	1,140	369	1,509	2010
1 -2	24,857	16,000	85	8857	1.68	66,680	50,981	81,569	4,078	1,258	5,337	2010

IV. Longitudinal Profile Thalweg Surveys

Longitudinal Profile Thalweg Survey Location Schematic

5/2011

Longitudinal Profile Thalweg Survey

V. Channel Transect Surveys

Cross Section Transect Survey Location Schematic

5/2011

Monitoring Cross Section Location Table

CROSS SECTION IDENTIFIATION TABLE			Through	May 2011											
River Station	Years Surveyed	Left (East)	Left (East)) Bank Pin -	Left (East) Bank Pin		Left (East) Bank Pin		Right (West) Bank	Right (West) Bank Pin		Right (West) Bank Pin		Right (West) Bank Pin	
		Bank Property	Тор с	of Bank	Mid Bank Base of Bank		Property	Top of Bank		Mid Bank		Base of Bank			
			Latitude	Longitude	Latitude	Longitude	Latitude	Longitude		Latitude	Longitude	Latitude	Longitude	Latitude	Longitude
0	ZINFANDEL														
22,027	2008, 2005 DT	Quintessa	38.4882342	-122.423606	-	-			Ranch Winery/Sutter Hor	38.487937	-122.423980	-	-		
21,629	2008, 2004	Quintessa			-	-			Ranch Winery/Sutter Hor	38.486979	-122.423331	-	-		
21,158	2008, 2004	Quintessa			-	-			Frogs Leap	38.486175	-122.422023	-	-		
20,628	2008, 2004	Quintessa			-	-			Frogs Leap	38.485420	-122.420577	-	-		
18,930	2008, 2007 DT	Quintessa	38.4818830	-122.416987	-	-	38.481877	-122.417078	Frogs Leap	38.481869	-122.417449	-	-		
17,891	2009	Carpy-Conolly	38.4790661	-122.416118	-	-	38.479141	-122.416500	Caymus	38.479287	-122.417046	38.479188	-122.416710	38.479173	-122.416650
16,422	2009	Carpy-Conolly	38.4753112	-122.416464	-	-	38.475231	-122.416627	Emmolo			-	-		
15,950	2009, 2004	Carpy-Conolly	38.4744460	-122.415476	-	-	38.474376	-122.415622	Emmolo	38.474242	-122.415901	-	-	38.474337	-122.415706
15,730	2009, 2004	Carpy-Conolly	38.4740120	-122.414825	-	-	38.473898	-122.414992	Emmolo	38.473772	-122.415180	-	-	38.473871	-122.415035
14,920	2011	Carpy-Conolly	38.4719700	-122.413419	38.471981	-122.413620	38.471986	-122.413686	Emmolo	38.472002	-122.413976	-	-	38.471990	-122.413768
13,845	2009 Long Profile	Honig	38.4690985	-122.413237	-	-	-	-		-	-	-	-	-	-
13,800	2010	Honig	38.4690410	-122.413207	-	-	38.469007	-122.413447	Mee	38.468965	-122.413733	-	-	38.468992	-122.413554
13,050	2010	Round Pond E	38.4669420	-122.413530	-	-	38.466919	-122.413721	Round Pond West	38.466846	-122.414295	38.466879	-122.414023	38.466900	-122.413878
12,060	2010 Long Profile	Round Pond E	38.4650540	-122.411736	-	-	-	-		-	-	-	-	-	-
12,000	THERFORD XRD														
8,830	2009, 2004	Wilsey	38.4580900	-122.408580	-	-	38.458030	-122.408730	St Supery	38.457690	-122.409980	-	-	38.457940	-122.409070
8,630	2009, 2004	Wilsey	38.4576800	-122.408430	-	-	38.457450	-122.408740	St Supery	38.457240	-122.409700	38.457430	-122.408970	38.457470	-122.408890
8,280	2009, 2004	Wilsey	38.4568900	-122.408280	-	-	38.456570	-122.408760	St Supery	38.456480	-122.408810	-	-	38.456570	-122.408780
7,830	2009, 2004	Wilsey	38.4556989	-122.407548	-	-			St Supery	38.455546	-122.408214	-	-		
7,700	2009, 2004	Wilsey	38.4554775	-122.407285	-	-			Sawyer	38.455139	-122.407950	-	-		
0	OAKVILLE XRD														
															Data Needed
															(-)No Pin

Monitoring Cross Section Map

Monitoring Cross Sections on Longitudinal Profile

Monitoring Cross Section Substrate Key

The distribution of substrate size classes along the cross section and longitudinal transects is indicated by coloring the cross section plot according to relative gravel size determined by eye during the survey.

brown	silt, soil	(<.062mm median diameter)
yellow	sand	(.062-2 mm median diameter)
orange	gravel	(2-64 mm median diameter)
red	cobble	(>64 mm median diameter)
purple	Boulder / Rip Rap	(>128 mm median diameter)
grey	bedrock	
green	roots	

Monitoring Cross Section 22,027 (Channel Bed)

Monitoring Cross Section 21,629 (Channel Bed)

Monitoring Cross Section 21,158 (Channel Bed)

Monitoring Cross Section 20,628 (Channel Bed)

Monitoring Cross Section 18,930 (Channel Bed)

Monitoring Cross Section 17,891

Monitoring Cross Section 17,891 (Channel Bed)

17,891 October 2009

Monitoring Cross Section 16,422

Monitoring Cross Section 16,422 (Channel Bed)

16,422 October 2009

Monitoring

Cross Section 15,950

Monitoring Cross Section 15,950 (Channel Bed)

Monitoring Cross Section 15,730

Monitoring Cross Section 15,730 (Channel Bed)

15,730 October 6,2009

Monitoring

Cross Section 14,920

14,920 May 3, 2011

13,050 June 4,2010

Monitoring Cross Section 8,830 (Channel Bed)

8,830 November 16, 2009

STATION 8,830

STATION 8,830

LEFT BANK BANK UPSTREAM

October 2004

October 2009

Monitoring

Cross Section 8,630

Monitoring Cross Section 8,630 (Channel Bed)

October 2009

October

2004

8,630 November 16, 2009

October 2009

October

2004

Monitoring Cross Section 8,280

Monitoring Cross Section 8,280 (Channel Bed)

8,280 November 17, 2009

November 2009

8,280

Monitoring Cross Section 7,830

Monitoring Cross Section 7,830 (Channel Bed)

October 2004

October 2009

7,830 October 2009

October 2004 October 2009

7,830

Monitoring Cross Section 7,700

Monitoring Cross Section 7,700 (Channel Bed)

7,700 October 2009

7,700 October 2004

October 2004

STATION 7,700

RIGHT BANK

LEFT BANK UPSTREAM

DOWNSTREAM

October 2009

VI. Pebble Counts

Median Grain Size (D50) on Riffles

Particle Size D50 (mm)																										
Reach			1&2				3					1				5	6			7			8		Ξ.	9
River Station	22,027	21,629	21,158	20,628	18,930	17,891	17,000	16,422	15,950	15,730	14,920	13,800	13,050	12,060	PEAK CFS	11,800	9,500	8,830	8,630	8,280	7,830	7,700	7,300	5,050	2,850	1,250
2004		8	16	16					16	8								16	8	8	8	8				
Peak Discharge 2005-03-22															3,890 cfs											
2005 (ICF J&S)	XS Only				XS Only	50	19							21		18	19						23	20	12	8
Peak Discharge 2005-12-31															18,300 cfs											
Peak Discharge 2006-12-26															1,350 cfs											
Peak Discharge 2008-01-04															4,460 cfs											
2008	15	25	11	25	30																					
Peak Discharge 2009-02-22															2,800 cfs											
2009						45		21	23	7								14	19	21	25	10				
POST 2005 FLOOD CHANGE		Coarser	Finer	Same		Finer			Coarser	Finer								Finer	Coarser	Coarser	Coarser	Same				
2009 Construction																										
Peak Discharge 2010-01-20															2080 cfs											
2010												XS Only	14													
2010 Construction																										
Peak Disharge 2011-03-20															4,080 cfs											
2011											19															
2011-2012 Construction																										
Peak Discharge																										
POST CONSTRUCTION CHANGE																										
Particle Size D84 (mm)																										
River Station	22,027	21,629	21,158	20,628	18,930	17,891	17,000	16,422	15,950	15,730	14,920	13,800	13,050	12,060		11,800	9,500	8,830	8,630	8,280	7,830	7,700	7,300	5,050	2,850	1,250
2004	-	32	32	32	-	-	-	-	32	32	-	-	-	-		-	-	32	32	16	16	16	-	-	-	-
Pre-Construction 2008-2011	32	32	32	32	32	90	-	32	45	23	32	-	32	-		-	-	32	32	32	32	16	-	-	-	-
POST 2005 FLOOD CHANGE		Same	Same	Same					Coarser	Finer								Same	Same	Coarser	Coarser	Same				

VII. Spawning Gravel Permeability

Spawning Gravel Permeability

The summarized results of the permeability analysis and the mortality index calculation performed by the Napa County Resource Conservation District for the riffle crest cross sections surveyed in 2004 are given in the table below.

DATE	River Station	MEDIAN A (cm/hr)	MEDIAN B (cm/hr)	SITE PERMEABILITY	SURVIVAL INDEX	D50 (mm)	D84 (mm)	RANK
				(cm/hr)				
11/23/2004	21,629	3000	1581	2290.5	33%	8	32	poor
11/23/2004	21,158	2544	3936	3240.0	38%	16	32	fair
11/23/2004	20,628	11618	6967	9292.5	53%	16	32	good
11/30/2004	15,950	6794	3183	4988.5	44%	16	32	fair
11/30/2004	15,730	5112	5304	5208.0	45%	8	32	fair
11/30/2004	8,830	2465	3171	2818.0	36%	16	32	fair
12/1/2004	8,630	2518	1640	2079.0	31%	8	32	poor
12/1/2004	8,280	1288	1636	1462.0	26%	8	16	poor
12/1/2004	7,830	2058	4351	3204.5	38%	8	16	fair
12/1/2004	7,700	2809	2755	2782.0	35%	8	16	poor

Aggregated gravel permeability results with calculated survival rates and qualitative ranking. Sites are listed in downstream order.

VIII. Channel Morphology Survey

Riffle Length and Frequency

Jones & Stokes mapped a total of 155 gravel bars in the 4.5 mile Rutherford Reach in 2005, which are depicted in the Field Assessments Maps in the *Final Basis of Design Report for the Napa River Rutherford Reach Restoration* Project (Jones & Stokes, October 2008), and enumerated by reach in the table below. As of the writing of this report, only the baseline distribution and extent of gravel bars have been mapped.

Number of Gravel Bars per Subreach (Jones & Stokes, 2005 survey, 2008 Report)

Reach	Bars Mapped	Bar Types
1	17	Lateral; Lateral Point
2	17	Lateral; Lateral Point; Mid-Channel
3	7	Lateral; Lateral Point; Mid-Channel
4	20	Lateral; Mid-Channel
5	5	Lateral; Lateral Point; High Bar/Terrace
6	24	Lateral; Lateral Point; Mid-Channel; High Bar / Terrace
7	17	Lateral; Lateral Point; Mid-Channel; High Bar / Terrace
8	32	Lateral; Lateral Point; Mid-Channel; High Bar / Terrace
9	16	Lateral; Lateral Point; Mid-Channel

Riffle Crest Distribution 2009-2010

The longitudinal thalweg survey completed in 2009-2010 documents the channel geometry of the Rutherford Reach, including pools riffles and glides. At the same time as the thalweg was surveyed, all riffle crests were mapped with a GPS. Riffle crests will be re-mapped as part of the annual stream survey starting in June 2011 to track the changes in riffle crest distribution and density along the project reach. During the long profile survey in 2009-2010, a total of 101 riffle crests were mapped throughout the Rutherford Reach. The performance standard is a 30% increase in riffle length or riffle frequency in treated locations.

Riffle Crest Distribution

IX. Residual Pool Depth Associated with Installed Instream Habitat Structures

Residual Pool Depth Associated with Instream Structures

Annual Survey Results

2011

Residual pool depth associated with instream structures will be measured for the first time in June 2011 during the annual stream survey. Instream structures will have experienced one year of winter flows at that time.
X. Large Woody Debris Surveys

Large Woody Debris

Annual Survey Results

2009

In 2009 155 occurrences of LWD were mapped, with 62% (96) being single pieces, 30% (47) being accumulations of between 209 pieces, and the remaining 8% (12) being jams of greater than 10 pieces. In 2010, 73% (148) of the 201 occurrences of LWD were single pieces, while 25% (49) were accumulations of 2-9 pieces, and the remaining 2% consisted of four (4) jam accumulations of greater than 10 pieces of wood. In 2010, there were about 50% more single pieces of LWD mapped in the channel versus 2009 (148 versus 96), while accumulations of 2-9 pieces remained relatively steady (49 versus 47). Jams of greater than 10 pieces of LWD reduced from 12 to 4 occurrences from 2009 to 2010 indicating that channel flows disseminated and dispersed some of the jams.

2010

Multiple locations and bedform association attributes were collected for each occurrence of mapped LWD. In 2010 fifty-four percent (54%) of the LWD were located on the left side of the channel, while a third were located on the right side of the channel. The remaining 10% were located mid-channel. Fifty-Four (54%) of LWD DBH were about12 inches long; while 30% were over a foot-and-a-half long. Almost all (95%) of the LWD was dead, with 5% rooted and alive. Ninety percent (90%) of the debris were flood deposited while 7% were placed in the channel. Over one-third of the LWD functioned as winter high flow refugia (34%), while 24% of the LWD provided bank stability. Pool scour was at 14% and summer refugia at 12%, and hydraulic constriction and other round out the remaining 10%. The majority of LWD were nearly equally split between pools (36%) and terraces (31%), with the remaining 33% associated with other bedforms. Thirty-five percent (35%) of the LWD were located in pool scour; while 25% provided in summer refugia. Fourteen percent and 11%, respectively, of the LWD functioned as hydraulic constriction and for bank stability. The primary function of 68% of LWD located on terraces was to provide winter high flow refugia, while 30% provided bank stability, and 15% provided summer refugia. The primary function of 43% of LWD located on gravel bars was to provide bank stability, while 29% provided winter high flow refugia, and 18% provided summer refugia. Forty percent (40%) of the LWD function on Riffle Crests are for 'Pool Scour'. The remaining 60% are evenly divided between 'Spawning Gravel Recruitment; Spawning Gravel Recruitment. The primary function of all LWD located in side channels was to provide winter high flow refugia.

Large Woody Debris Structure Persistence (# years, % persisting);

Instream structures were first installed in the summer of 2010 as part of Phase 1b: Reaches 1-2 West, and Phase 2: Reach 3 construction. The status of Large Woody Debris (LWD) structures will be assessed for the first time in June 2011. The performance standard is 75% persistence of installed instream habitat enhancement structures. Evaluation of the habitat function during winter and spring 2011 stream flows is provided in Appendix D. Study IX..

Large Woody Debris Survey 2010 Chart and Map

Large Woody Debris Survey 2010 Chart and Graph

Large Woody Debris Survey 2010 Distribution on Longitudinal Profile

River Station (x1,000 feet)

Large Woody Debris Survey 2010 and 2009 Distribution on Longitudinal Profile

LWD Distribution

Napa River Rutherford Reach Annual Maintenance Surveys June 2009 and 2010

LWD 2009 LWD 2010

River Station (x 1,000 feet)

River Channel Profile

Large Woody Debris Survey 2010 and 2009 Configurations

Large Woody Debris Photos of Examples Persisting from 2009-2010

24100 CH-LB 2009

24100 CH-RB 2010

19390 CH-DS 2009

19390 CH-DS 2010

15650 CH-LB 2009

15650 CH-LB 2010

9950 CH-RB 2009

9950 CH-RB 2010

8100 CH-DS 2009

8100 CH-DS 2010

XI. Seasonal Salmonid Habitat Surveys

Flow Velocities in Constructed High-Flow Refugia Areas

The performance standard is high flow refugia with velocities less than 6 feet per second (FPS) for flows 500 cfs and above at constructed alcoves and instream bankfull benches, with specific target velocities for salmonid life stages as per the table below.

Target Salmonid Habitat Criteria

Species / Life Stage	Depth (feet)	Substrate	Velocity (fps)
Steelhead Fry	0.0 – 1.5	substrate > sand organic cover	0.0 – 0.5
Small Juvenile Steelhead	0.5 – 1.5	tennis ball substrate deeper w/ organic cover	0.5 – 1.5
Large Juvenile Steelhead	> 1.5		1.0 - 2.5
Adult Spawning	0.5 – 2.0		1.0 - 2.5
BMI-Riffle	0.1 – 1.5	> golf ball substrate	> 1.5

Source: NOAA/NMFS Criteria for MicroHabitat Mapping on Alameda Creek

2011 High Water Mark and Water Surface Elevation for Velocity Monitoring of High Flow Refugia

	Discharge Napa River						
	Near St. Helena at Pope						
	Street Bridge		١	Vater Surface Elev	vation (ft NAVD88	3)	
	(cfs)	Sutter Alcove	Frogs Leap Bench 1	Caymus Bench 0	Caymus Bench 1	Caymus Bench 2	Caymus Bench 3
River Station		21950	19680	18300	17500	17290	17050
HWM 2/16/2011	2,930		160.31	157.22	155.94	155.36	154.74
WSEL 2/16/2011 10:36	1,150	159.96					
WSEL 2/16/2011 11:03	1,120		156.13				
WSEL 2/16/2011 11:22	1,100			152.40			
WSEL 2/16/2011 11:42	1,070				150.18		
WSEL 2/16/2011 12:11	1,030						149.20
HWM 2/17/2011	3,160	165.38	160.92	157.89	156.81	156.30	155.75
WSEL 2/23/2011	228	155.52	151.61	148.34	145.49	145.52	144.76

Fall and Winter Rearing Habitat for 0-1+ Steelhead, and Immigrating/Emigrating Salmonids

Alcove: Ranch Winery / Sutter Home: Right Bank Stations 22,225-21,900 Sketch

February 16, 2011

Discharge: 1,150 cfs (Napa River Near St. Helena at Pope Street)

Water Surface Elevation: 159.96 ft (NAVD 88)

Monitored velocities of 0.26 - 0.63 fps at 0.6 ft water depth in this created in this created alcove are suitable for steelhead fry and small juvenile rearing.

Alcove: Ranch Winery / Sutter Home: Right Bank Stations 22,225-21,900 Photos

February 16, 2011 Discharge: 1,150 cfs (Napa River Near St. Helena at Pope Street) Water Surface Elevation: 159.96 ft (NAVD 88)

Bench 1: Caymus: Right/West Bank Stations 17,700-17,425 Sketch

February 16, 2011

Discharge: 1,070 cfs (Napa River Near St. Helena at Pope Street)

Water Surface Elevation: 150.18 ft (NAVD 88)

Monitored velocities of 1.75 fps at 0.6 ft water depth in the downstream end of this created secondary channel are suitable for small and large juvenile steelhead rearing. Gravel recruitment at the downstream end may create BMI riffle habitat.

SKETCH : J. KOEHLER VELOCITY : P. BLANK (USGS METER @ 0.6 WATER DEPTH)

Bench 1: Caymus: Right/West Bank Stations 17,700-17,425 Photos

February 16, 2011 Discharge: 1,070 cfs (Napa River Near St. Helena at Pope Street) Water Surface Elevation: 150.18 ft (NAVD 88)

Bench 2: Caymus: Right/West Bank Stations 17,350-17,160 Sketch

February 16, 2011

Discharge: 1,030 cfs (Napa River Near St. Helena at Pope Street)

Monitored velocities of 0.24 fps and slack water at 0.6 ft water depth in this created edgewater habitat are suitable for steelhead fry.

Bench 2: Caymus: Right/West Bank Stations 17,350-17,160 Photos

February 16, 2011

Discharge: 1,030 cfs (Napa River Near St. Helena at Pope Street)

Bench 3: Caymus: Right/West Bank Stations 17,150-16,850 Sketch

February 16, 2011

Discharge: 1,030 cfs (Napa River Near St. Helena at Pope Street)

Water Surface Elevation: 149.2 ft (NAVD 88)

Monitored velocities of 1.14-1.89 fps at 0.6 ft water depth in this created edgewater habitat are suitable for small and large juvenile steelhead rearing.

Bench 3: Caymus: Right/West Bank Stations 17,150-16,850 Photos

February 16, 2011 Discharge: 1,030 cfs (Napa River Near St. Helena at Pope Street) Water Surface Elevation: 149.2 ft (NAVD 88)

XII. Vegetation Establishment Surveys

Vegetation Establishment Surveys

Annual Survey Results

2011

Results from vegetation establishment surveys performed will be reported for the first time in the 2011 Monitoring Report.

XIII. Stakeholder Participation Documentation

Landowner Access Agreements

Property (28 Total)	Parcel No.	Bank	Phase	Construction Year	Reach									Right of Entry for Final Design Signed	Temporary Construction Easement Signed	20 Year Maintenance Access Agreement Signed
1	030250017000	East	1a	2009	1									Yes	2009	Pending
2	030060025000	West	1b	2010	1	2								Yes	2010	Yes
3	030060049000	East	1a	2009	1	2								Yes	2009	Yes
3	030060059000	East	1a	2009	1	2								Yes	2009	Yes
4	030060021000	West	1b	2010		2								Yes	2010	Yes
5	030230013000	West	2	2010		2	3							Yes	2010	Yes
6	030090002000	East	2	2010			3	4						Yes	2010	Yes
7	030230019000	West	3	2012			3	4						Yes	2011	Yes
8	030090003000	East	3	2011				4						Yes	2011	Yes
9	030230004000	West	3	2012				4						Yes	2011	Yes
10	030230021000	West	3	2012				4						Yes	2011	Yes
11	030140004000	East	3	2011				4						Yes	2011	Yes
12	030190005000	West	4	2012							8	B		Yes	2010	Yes
13	030190004000	West	4	2012							8	B		Yes		Pending
14	030140019000	East	4	2012						7	' 8	B		Yes		Pending
15	030190013000	West	4	TBD							8	B		Yes		Yes
16	030190012000	West	4	TBD							8	B		Yes		Yes
17	031010005000	West	4	TBD							8	B		Yes		Yes
18	031030014000	East	4	TBD							8	B		Yes		Pending
19	031010006000	West	4	TBD							8	B		Yes		Yes
20	031030017000	East	4	TBD							8	B	9	Yes		Pending
20	031030018000	East	4	TBD							8	8	9	Yes		Pending
21	031010009000	West	4	TBD							8	8		Yes		Yes
22	031010003000	West	4	TBD									9	Pending		Pending

Maintenance Requests

Records of landowner maintenance requests are maintained by the Napa County Flood Control and Water Conservation District. Annual maintenance activities are reported in a separate Annual Channel Maintenance and Monitoring Report for the Rutherford Reach of the Napa River produced by the Napa County Flood Control and Water Conservation District.

XIV. Photomonitoring