NAPA COUNTY BASELINE DATA REPORT

# CHAPTER 6 NOISE RESOURCES



CHRONOLOGY OF UPDATES

NOVEMBER 30, 2005—VERSION 1

LAND USE ACTIVITIES IN NAPA COUNTY

# <u>Purpose</u>

The purpose of this chapter is to provide a summary of existing noise conditions in Napa County. This chapter is the culmination of focused research and review of numerous existing background reports and publications that contain information on noise sources and sensitive receptors in Napa County. This document and the data assembled provide broad tools for site and regional planning as well as the basis for future planning documents relating to the management of noise.

# TABLE OF CONTENTS

| INTRODUCTION                                                                      | -1         |
|-----------------------------------------------------------------------------------|------------|
| Specialized Terms Used                                                            | - I<br>- J |
| Equivalencies between various Sound Descriptors                                   | ·Z         |
| Working with Deciber Values                                                       | -2         |
| Outdoor Sound Propagation                                                         | -2         |
| Policy Considerations                                                             | -3         |
| Federal Policies                                                                  | -3         |
| State Policies                                                                    | -4         |
|                                                                                   | .7         |
| Definition of Study Area 6.                                                       | -7         |
| Resources Consulted 6.                                                            | -7         |
|                                                                                   | - 1        |
| Existing Noise Conditions                                                         | -7         |
| Noise-Sensitive Land Uses6                                                        | -8         |
| Major Noise Sources (Mobile and Stationary)6-                                     | -8         |
| Existing Noise Exposures                                                          | 2          |
| Existing Noise Conflicts in Napa County                                           | 2          |
| CONCLUSIONS AND REPORT UPDATE RECOMMENDATIONS                                     | 3          |
|                                                                                   |            |
| REFERENCES CITED                                                                  | 6          |
| Printed References                                                                | 6          |
| Personal Communications                                                           | 6          |
| APPENDIX NOISE-A HOSPITALS, HEALTHCARE FACILITIES, AND ASSISTED LIVING FACILITIES |            |
| APPENDIX NOISE-B PARKS, WILDLIFE AREAS, AND RECREATION AREAS                      |            |
| APPENDIX NOISE-C PLACES OF WORSHIP                                                |            |
| Appendix Noise-D Libraries                                                        |            |
| APPENDIX NOISE-E SCHOOLS                                                          |            |
| Appendix Noise-F Wineries                                                         |            |

# TABLES

| 6-1  | Typical Noise Levels                                                                                     | 6-1          |
|------|----------------------------------------------------------------------------------------------------------|--------------|
| 6-2  | State Land Use Compatibility Standards for Community Noise Environment                                   | 6-5          |
| 6-3  | Napa County Land Use Compatibility Guidelines (dBA, Ldn)                                                 | 6-5          |
| 6-4  | Napa County Recommended Maximum Interior Noise Level Criteria for Intermittent Noise                     | 6-6          |
| 6-5  | Napa County Noise Ordinance Interior Noise Limits                                                        | 6-6          |
| 6-6  | Napa County Noise Ordinance Exterior Noise Limits                                                        | 6-6          |
| 6-7  | Napa County Noise Ordinance Noise Limits for Construction Activities                                     | 6-7          |
| 6-8  | Summary of Traffic Data and Noise Modeling Results for County Roads and Freeways for Existing Conditions | follows 6-8  |
| 6-9  | Napa County Airport Master Plan Activity Forecast                                                        | 6-9          |
| 6-10 | Typical Sound Levels Generated by Small Aircraft                                                         | 6-10         |
| 6-11 | Napa Valley Wine Train Schedule                                                                          | 6-10         |
| 6-12 | Construction Equipment Noise Emission Levels                                                             | 6-10         |
| 6-13 | Estimated Distance to dBA Contours from Construction Activities                                          | 6-11         |
| 6-14 | Estimated Distance to dBA Contours from Farming Activities                                               | 6-11         |
| 6-15 | Representative Sound Levels for Winery Activities                                                        | 6-12         |
| 6-16 | Summary of Short-Term Noise Monitoring                                                                   | follows 6-12 |
| 6-17 | Summary of Long-Term Noise Monitoring at Position 2                                                      | follows 6-12 |
| 6-18 | Summary of Long-Term Noise Monitoring at Position 5                                                      | 6-14         |
| 6-19 | Summary of Long-Term Noise Monitoring at Position 7                                                      | 6-14         |
| 6-20 | Summary of Long-Term Noise Monitoring at Position 13                                                     | 6-15         |
| 6-21 | Summary of Long-Term Noise Monitoring at Position 16                                                     | 6-15         |
|      |                                                                                                          |              |

## On page

# FIGURES

# Follows page

| 6-1 | Long-Term Noise Monitoring Position 2  | 6-16 |
|-----|----------------------------------------|------|
| 6-2 | Long-Term Noise Monitoring Position 16 | 6-16 |
| 6-3 | Long-Term Noise Monitoring Position 13 | 6-16 |
| 6-4 | Long-Term Noise Monitoring Position 5  | 6-16 |
| 6-5 | Long-Term Noise Monitoring Position 7  | 6-16 |

# MAPS

# Follows page

| 6-1  | Sensitive Receptors and Population Centers, Napa County                         | 6-16 |
|------|---------------------------------------------------------------------------------|------|
| 6-2  | Sensitive Receptors and Population Centers, Nortwestern Napa County             | 6-16 |
| 6-3  | Sensitive Receptors and Population Centers, Southern Napa County                | 6-16 |
| 6-4  | Traffic Noise Contours and Noise Monitoring Positions, Napa County              | 6-16 |
| 6-5  | Traffic Noise Contours and Noise Monitoring Positions, Northwestern Napa County | 6-16 |
| 6-6  | Traffic Noise Contours and Noise Monitoring Positions, Southern Napa County     | 6-16 |
| 6-7  | Noise Contours—2002, Napa County Airport                                        | 6-16 |
| 6-8  | Noise Contours—2022, Napa County Airport                                        | 6-16 |
| 6-9  | Noise Contours, Parrett Field                                                   | 6-16 |
| 6-10 | Typical Noise Sources, Napa County                                              | 6-16 |
| 6-11 | Typical Coise Sources, Northwestern Napa County                                 | 6-16 |
| 6-12 | Typical Noise Sources, Southern Napa County                                     | 6-16 |

| AICUZ            | Air Installation Compatible Use Zone    |
|------------------|-----------------------------------------|
| BDR              | Napa County Baseline Data Report        |
| Caltrans         | California Department of Transportation |
| CCR              | California Code of Regulations          |
| CNEL             | community noise equivalent level        |
| County           | Napa County                             |
| dB               | decibel                                 |
| dBA              | A-weighted decibel                      |
| EPA              | U.S. Environmental Protection Agency    |
| FAA              | Federal Aviation Administration         |
| FHWA             | Federal Highway Administration          |
| FRA              | Federal Railroad Administration         |
| FTA              | Federal Transit Authority               |
| HUD              | Housing and Urban Development           |
| I-80             | Interstate 80                           |
| L <sub>dn</sub>  | day-night average sound level           |
| L <sub>eq</sub>  | equivalent sound level                  |
| L <sub>max</sub> | maximum sound level                     |
| L <sub>min</sub> | minimum sound level                     |
| L <sub>x</sub>   | percentile-exceeded sound level         |
| SR               | State Route                             |

# LIST OF ACRONYMS AND ABBREVIATIONS

NOISE RESOURCES—VERSION 1, NOVEMBER 2005

# **INTRODUCTION**

his noise chapter provides a detailed discussion of existing noise conditions for the evaluation areas being considered in the Napa County Baseline Data Report (BDR). This chapter also discusses the federal, state, and local policies that govern environmental noise in Napa County (County), describes the methods used to quantify noise conditions in the County, and identifies noise-sensitive land uses and major noise sources and existing noise conditions.

# SPECIALIZED TERMS USED

Sound travels through the air as waves of minute air pressure fluctuations caused by some type of vibration. In general, sound waves travel away from the sound source as an expanding spherical surface. The energy contained in a sound wave is consequently spread over an increasing area as it travels away from the source. This results in a decrease in loudness at greater distances from the sound source.

- Decibel (dB): Sound-level meters measure the pressure fluctuations caused by sound waves. Because of the ability of the human ear to respond to a wide dynamic range of sound pressure fluctuations, loudness is measured in terms of decibels (dB) on a logarithmic scale. This results in a scale that measures pressure fluctuations with a convenient range of values and corresponds to our auditory perception of increasing or decreasing loudness.
- A-Weighted Decibels (dBA): Most sounds consist of a broad range of sound frequencies. Because the human ear is not equally sensitive to all frequencies, several frequency-weighting schemes have been used to develop composite decibel scales that approximate the way the human ear responds to sound levels. The "A-weighted" decibel scale (dBA) is the most widely used for this purpose. Typical A-weighted sound levels for various types of sound sources are summarized in Table 6-1.
- *Equivalent Sound Level (Leq)*: Time-varying sound levels are often described in terms of an equivalent constant decibel level. The equivalent sound level  $(L_{eq})$  is the average of sound energy occurring over a specified time period. In effect, Leq is the steady-state sound level that would contain the same acoustical energy in a stated time period as the time-varying sound that actually occurs during the same period. Equivalent sound levels are often used to develop single-value descriptions of average sound exposure over various periods of time. Such average sound exposure values often include additional weighting factors for annovance potential attributable to time of day or other considerations. The L<sub>eg</sub> data used for these average sound exposure descriptors are generally based on A-weighted sound-level measurements.
- Day-Night Average Sound Level (Ldn): Average sound exposure over a 24-hour period is often presented as a day-night average sound level (L<sub>dn</sub>). L<sub>dn</sub> values are calculated from hourly L<sub>eq</sub>

#### Table 6-1. Typical Noise Levels

Common Out

Jet fly-over at 300 meter

Gas lawn mower at 1

Diesel truck at 15 meters (50 feet) at 80

Noisy urban Gas lawn mower, 30 me Co Heavy traffic at 90 me

Quiet

Quiet ur Quiet subur

Quiet

Lowest threshold of h

Source: California Department of T



Sound travels through the air as waves of minute air pressure fluctuations caused by vibration. The energy contained in a sound wave is spread over an increasing area as it travels away from the source.

values, with the Leg values for the nighttime period (10:00 p.m. to 7:00 a.m.) increased by 10 dB to reflect the greater disturbance potential from nighttime noises.

|                 | Noise Level      |                                             |
|-----------------|------------------|---------------------------------------------|
| door Activities | (dBA)            | Common Indoor Activities                    |
|                 | 110              |                                             |
| (               | - 110 -          | Rock band                                   |
| rs (1,000 feet) |                  |                                             |
|                 | <u> </u>         |                                             |
| meter (3 feet)  |                  |                                             |
|                 | <u> </u>         |                                             |
| kph (50 mph)    |                  | Food blender at 1 meter (3 feet)            |
|                 | <u> </u>         | Garbage disposal at 1 meter (3 feet)        |
| area, daytime   |                  |                                             |
| ters (100 feet) | <u> </u>         | Vacuum cleaner at 3 meters (10 feet)        |
| mmercial area   |                  | Normal speech at 1 meter (3 feet)           |
| ters (300 feet) | <u> </u>         |                                             |
|                 |                  | Large business office                       |
| urban daytime   | <u> </u>         | Dishwasher next room                        |
|                 |                  |                                             |
| rban nighttime  | <u> </u>         | Theater, large conference room (background) |
| ban nighttime   |                  |                                             |
|                 | <u> </u>         | Library                                     |
| rural nighttime |                  | Bedroom at night, concert                   |
|                 | <u> </u>         |                                             |
|                 |                  | Broadcast/recording studio                  |
|                 | — 10 —           |                                             |
|                 |                  |                                             |
| uman hearing    | — 0 —            | Lowest threshold of human hearing           |
|                 |                  |                                             |
| ransportation N | oise Protocol Te | chnical Noise Supplement                    |

*Community Noise Equivalent Level (CNEL)*: The community noise equivalent level (CNEL) is also used to characterize average sound levels over a 24-hour period, with weighting factors included for evening and nighttime sound levels. Leg values for the evening period (7:00 p.m. to 10:00 p.m.) are increased by 5 dB, while Leq values for the nighttime period (10:00 p.m. to 7:00 a.m.) are increased by 10 dB. For given set of sound measurements, the CNEL value will usually be about 1 dB higher than the L<sub>dn</sub> value. In practice, CNEL and L<sub>dn</sub> are often used interchangeably.

Percentile-Exceeded (Lx), and Maximum and Minimum Sound Levels (Lmax and Lmin): The sound level exceeded during a given percentage of a measurement period is the percentile-exceeded sound level (L<sub>x</sub>). Examples include L<sub>10</sub>, L<sub>50</sub>, and L<sub>90</sub>. L<sub>10</sub> is the A-weighted sound level that is exceeded 10% of the measurement period,  $L_{50}$  is the level exceeded 50% of the period, and so on.  $L_{50}$  is the median sound level measured during the measurement period.  $L_{90}$ , the sound level exceeded 90% of the time, excludes high localized sound levels produced by nearby sources such

#### NAPA COUNTY BASELINE DATA REPORT

as single car passages or bird chirps.  $L_{90}$  is often used to represent the background sound level.  $L_{50}$  is also used to provide a less conservative assessment of the background sound level.

The maximum sound level ( $L_{max}$ ) and the minimum sound level ( $L_{min}$ ) are the maximum and minimum sound levels, respectively, measured during the measurement period. When a sound meter is set to the slow response setting, as is typical for most community noise measurements, the  $L_{max}$  and  $L_{min}$  values are the maximum and minimum levels measured over a 1-second period.

- Ambient Sound: Ambient sound is the all-encompassing sound associated with a given community site, including any specific source(s) of interest. It is usually a composite of sounds from many sources, near and far, with no particular sound being dominant.
- Background Sound: Background sound is total sound associated with a given community site, independent of the noise source of interest.
- Noise Contour: Noise contours are lines drawn on a map around a source indicating constant levels of noise exposure. Leg, Ldn, and CNEL are commonly used noise contour metrics.

# EQUIVALENCIES BETWEEN VARIOUS SOUND DESCRIPTORS

The  $L_{dn}$  value at a site calculated from a set of measurements taken over a given 24-hour period will be slightly lower than the CNEL value calculated over the same period. Except in situations where unusually high evening sound levels occur, the CNEL value will be within about 1.5 dB of the  $L_{dn}$  value for the same set of sound measurements.

The relationship between peak hourly  $L_{eq}$  values and associated  $L_{dn}$  values depends on the distribution of traffic over the entire day. There is no precise way to convert a peak hourly  $L_{eq}$  value to an  $L_{dn}$  value. However, in urban areas near heavy traffic, the peak hourly  $L_{eq}$  value is typically 2–4 dB lower than the daily  $L_{dn}$  value. In less heavily developed areas, the peak hourly  $L_{eq}$  is often equal to the daily  $L_{dn}$  value. For rural areas with little nighttime traffic, the peak hourly  $L_{eq}$  value will often be 3–4 dB higher than the daily  $L_{dn}$  value.

# WORKING WITH DECIBEL VALUES

The nature of the decibel scale is such that the individual sound levels for different sound sources cannot be added directly to give the combined sound level of these sources. Two sound sources producing equal sound levels at a given location will produce a composite sound level that is 3 dB higher than either sound alone. When two sound sources differ by 10 dB, the composite sound level will be only 0.4 dB higher than the louder source alone.

Most people have difficulty distinguishing the louder of two sound sources if they differ by less than 1.5–2.0 dB. Research indicates the following about the human perception of changes in sound level.

- A 3-dB change is just perceptible.
- A 5-dB change is clearly perceptible.
- A 10-dB change is perceived as being twice or half as loud.

A doubling or halving of acoustic energy will change the resulting sound level by 3 dB, which corresponds to a change that is just perceptible. In practice, this means that a doubling of traffic volume on a roadway, doubling the number of people in a stadium, or doubling the number of wind turbines in a wind farm will, as a general rule, only result in a 3-dB, or just perceptible, increase in noise.

# **OUTDOOR SOUND PROPAGATION**

There are a number of factors that affect how sound propagates outdoors. These factors, described by Hoover and Keith (1996), are summarized below.

## **DISTANCE ATTENUATION**

As a general rule, sound from localized or point sound sources spreads out as it travels away from the source and the sound level drops at a rate of 6 dB per doubling of distance. If the sound source is long in one dimension, such as traffic on a highway or a long train, the sound source is considered to be a line source. As a general rule, the sound level from a line source will drop off at a rate of 3 dB per doubling of distance. If the intervening ground between a point or line source and the receptor is acoustically "soft" (e.g., ground vegetation, scattered trees, clumps of bushes), the attenuation rate is increased by about 1.5 dB per doubling of distance (i.e., 7.5 dB per doubling of distance for point sources and 4.5 dB per doubling of distance for line sources).

## ATTENUATION FROM BARRIERS

Any solid structure such as a berm, wall, or building that blocks the line of sight between a source and receiver serves as a sound barrier and will result in additional sound attenuation. The amount of additional attenuation is a function of the difference between the length of the sound path over the barrier and the length of the direct line of sight path. Thus, the sound attenuation of a barrier between a source and a receiver that are very far apart will be much less than the attenuation that would result if either the source or the receiver is very close to the barrier.



A sound barrier must block the line of sight between the source and receiver to provide attenuation of the direct sound.



Any residential structures located in noise-critical areas, such as proximity to highways, county roads, county streets, railroads, rapid transit lines, airports, or industrial areas, must be designed to prevent the intrusion of exterior noises beyond the interior standard of 45 dBA (L<sub>dn</sub> or CNEL).

# **OTHER ATMOSPHERIC EFFECTS**

Short-term atmospheric effects relating to wind and temperature gradients can cause bending of sound waves and influence changes in sound levels at large distances. These effects can either increase or decrease sound levels, depending on the orientation of the source and receptor and the nature of the wind and temperature gradient. Because these effects are normally short term, it is generally not practical to include them in sound propagation calculations. Understanding these effects, however, can help explain variations that occur between calculated and measured sound levels.

# **POLICY CONSIDERATIONS**

This section discusses the federal, state, and local policies that are relevant to the analysis of noise in Napa County.

# FEDERAL POLICIES

The federal Noise Control Act of 1972 (Public Law 92-574) established a requirement that all federal agencies administer their programs to promote an environment free of noise that jeopardizes public health or welfare. The U.S. Environmental Protection Agency (EPA) was given the following responsibilities.

- Provide information to the public regarding identifiable effects of noise on public health or welfare.
- Publish information on the levels of environmental noise that will protect the public health and welfare with an adequate margin of safety.
- Coordinate federal research and activities related to noise control.
- Establish federal noise emission standards for selected products distributed in interstate commerce.

The federal Noise Control Act also directed that all federal agencies comply with applicable federal, state, interstate, and local noise control regulations.

Although EPA was given major public information and federal agency coordination roles, each federal agency retains authority to adopt noise regulations pertaining to agency programs. EPA can require other federal agencies to justify their noise regulations in terms of the federal Noise Control Act policy requirements. The following is a summary of key federal agencies and the jurisdiction that they have related to noise.

Housing and Urban Development (HUD)—Noise standards for federally funded housing project.

#### **ENVIRONMENTAL PROTECTION AGENCY**

In 1974, in response to the requirements of the federal Noise Control Act, EPA identified indoor and outdoor noise limits to protect public health and welfare (communication disruption, sleep disturbance, and hearing damage). Outdoor L<sub>dn</sub> limits of 55 dB and indoor L<sub>dn</sub> limits of 45 dB are identified as desirable to protect against speech interference and sleep disturbance for residential, educational, and healthcare areas. Sound-level criteria to protect against hearing damage in commercial and industrial areas are identified as 24-hour Leg values of 70 dB (both outdoors and indoors).

### HOUSING AND URBAN DEVELOPMENT

The U.S. Department of Housing and Urban Development has established guidelines for evaluating noise impacts on residential projects seeking financial support under various grant programs (44 FR 135:40860-40866, January 23, 1979). Sites are generally considered acceptable for residential use if they are exposed to outdoor Ldn values of 65 dB or less. Sites are considered "normally unacceptable" if they are exposed to outdoor  $L_{dn}$  values of 65–75 dB. Sites are considered unacceptable if they are exposed to outdoor L<sub>dn</sub> values above 75 dB. The HUD goal for the interior noise level in residences is that noise levels should not exceed 45 dB-L<sub>dn</sub>.

FEDERAL AVIATION ADMINISTRATION

14 CFR Part 150, "Airport Noise Compatibility Planning" prescribes the procedures, standards, and methodology to be applied airport noise compatibility planning activities. Noise levels below 65 L<sub>dn</sub> are normally considered to be acceptable for noise-sensitive land uses.

FEDERAL HIGHWAY ADMINISTRATION

FHWA regulations (23 CFR 772) specify procedures for evaluating noise impacts associated with federally funded highway projects and for determining whether these impacts are sufficient to justify funding noise abatement actions. The FHWA noise abatement criteria are based on worst hourly Leg sound levels, not L<sub>dn</sub> or CNEL values. The worst-hour 1-hour L<sub>eg</sub> criteria for residential, educational, and healthcare facilities are 67 dB outdoors and 52 dB indoors. The worst-hour 1-hour Leg criterion for commercial and industrial areas is 72 dB (outdoors).

#### NAPA COUNTY BASELINE DATA REPORT

Federal Aviation Administration (FAA)—Noise standards for aircraft noise.

Federal Highway Administration (FHWA)—Noise standards for federally funded highway projects.

Federal Transit Authority (FTA)—Noise standards for federally funded transit projects.

Federal Railroad Administration (FRA)—Noise standards for federally funded railroad projects.

### FEDERAL TRANSIT AUTHORITY

FTA procedures for the evaluation noise from transit projects are specified in the document entitled "Transit Noise and Vibration Impact Assessment" (Federal Transit Authority 1995). The FTA Noise Impact Criteria group noise-sensitive land uses into the following three categories.

- Category 1: Buildings or parks where quiet is an essential element of their purpose.
- Category 2: Residences and buildings where people normally sleep. This includes residences, hospitals, and hotels where nighttime sensitivity is assumed to be of utmost importance.
- Category 3: Institutional land uses with primarily daytime and evening use. This category includes schools, libraries, churches and active parks.

 $L_{dn}$  is used to characterize noise exposure for residential areas (Category 2). For other noise-sensitive land uses, such as outdoor amphitheaters and school buildings (Categories 1 and 3), the maximum 1-hour  $L_{eq}$  during the facility's operating period is used.

The noise impacts are identified based on absolute predicted noise levels and increases in noise associated with the project.

## FEDERAL RAILROAD ADMINISTRATION

FRA procedures for the evaluation noise from high-speed (greater than 125 mph) rail projects are specified in the document entitled "High-Speed Ground Transportation Noise and Vibration Impact Assessment" (Federal Railroad Administration 1998). Noise standards pertaining to rail projects are contained in Code of Federal Regulations, Title 49, Section 210.

# STATE POLICIES

# CALIFORNIA NOISE INSULATION STANDARDS

The California Noise Insulation Standards are found in the California Code of Regulations (CCR), Title 24 (known as the Building Standards Administrative Code), Part 2 (known as the California Building Code). The standards establish an interior noise (attributable to exterior sources) limit of 45 dBA ( $L_{dn}$  or CNEL, with  $L_{dn}$  as the preferred metric) for any habitable room within any new hotel, motel, dormitory, long-term care facility, apartment house, or dwelling other than detached single-family dwellings. Any residential structures located in noise-critical areas, such as proximity to highways, county roads, county streets, railroads, rapid transit lines, airports, or industrial areas, must be designed to prevent the intrusion of exterior noises beyond the interior standard of 45 dBA ( $L_{dn}$  or CNEL). To determine compliance with the standard, worst-case noise levels, either existing or future, must be used. If future noise levels are used, then they shall be predicted for a period of at least 10 years from the time of building permit application.

When residential structures are proposed within an area exceeding 60 dBA ( $L_{dn}$  or CNEL), an acoustical analysis is required to demonstrate that the building design will limit exterior noise to the interior standard of 45 dBA ( $L_{dn}$  or CNEL). When residential structures are proposed within an area where the annual noise level from airport operations exceeds 60 dBA ( $L_{dn}$  or CNEL), an acoustical analysis is required to demonstrate that the building design will limit exterior noise to the interior standard of 45 dBA ( $L_{dn}$  or CNEL). When residential structures are proposed within an area where the annual noise level from airport operations exceeds 60 dBA ( $L_{dn}$  or CNEL), an acoustical analysis is required to demonstrate that the building design will limit exterior noise to the interior standard of 45 dBA ( $L_{dn}$  or CNEL). For public use airports or heliports, the noise level shall be determined from the airport land use plan prepared by the county wherein the airport is located. For military bases, the noise level shall be determined from the facility Air Installation Compatible Use Zone (AICUZ) plan. For all other airports or heliports, or public use airports or heliports for which a land use plan has not been developed, the noise level shall be determined from the noise element of the general plan of the local jurisdiction.

If allowable interior noise levels are met by requiring that windows be non-openable or closed, the design for the structure must also specify a ventilation or air conditioning system to provide a habitable interior environment. The system must not compromise the dwelling unit or guest room noise reduction.

# CALIFORNIA VEHICLE CODE

Noise generated by motor vehicles including buses is regulated under California Vehicle Code Section 27204. Depending on the weight and date of vehicle manufacture, the noise limit at 50 feet from the centerline of travel cannot exceed sound levels in the range of 80 to 88 dBA.

# DIVISION OF AERONAUTICS NOISE STANDARDS

Title 21 Chapter 5000 of the CCR identifies noise compatibility standards for airport operations. Section 5014 of the code states that the standard for the acceptable level of aircraft noise for persons living in the vicinity of airports is established to be a community noise equivalent level of 65 decibels. Land uses such a residences, schools, hospitals, or places of worship exposed to aircraft noise exceeding 65 dB CNEL are deemed to be in a noise impact area. This standard forms the basis for the limitation that no airport proprietor of an airport shall operate an airport with a noise impact area based on the standard of 65 dB CNEL unless the operator has applied for or received a variance.

# CALIFORNIA GENERAL PLAN GUIDELINES

California Government Code Section 65302(f) requires that cities and counties include a noise element in their general plans. The purpose of the noise element is to provide a guide for establishing a pattern of land uses that minimizes the exposure of community residents to excessive noise. The California Governor's Office of Planning and Research has published general plan guidelines that include guidelines for noise land use compatibility (Table 6-2).



Napa County Airport

The California Code of Regulations states that the standard for the acceptable level of aircraft noise is 65 dB CNEL.

Community Noise Exposure—Ldn or CNEL (dB) Land Use Category 50 55 80 60 65 Residential-low-density single family, duplex, mobile homes Residential-multi-family Transient lodging-motels, hotels Schools, libraries, churches, hospitals, nursing homes Auditoriums, concert halls, amphitheaters Sports arenas, outdoor spectator sports Playgrounds, neighborhood parks Golf courses, riding stables, water recreation, cemeteries Office buildings, business commercial and professional Industrial, manufacturing, utilities, agriculture Notes: Normally Acceptable Specified land use is satisfactory, based upon the assumption that any buildings involved are of normal conventional construction, without any special noise insulation requirements. Conditionally Acceptable New construction or development should be undertaken only after a detailed analysis of the noise reduction requirements is made and needed noise insulation features are included in the design. Conventional construction, but with closed windows and fresh air supply systems or air conditioning will normally suffice. Normally Unacceptable New construction or development should generally be discouraged. If new construction or development does proceed, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features included in the design. Clearly Unacceptable New construction or development generally should not be undertaken. Source: California Governor's Office of Planning and Research 2003

# Table 6-2. State Land Use Compatibility Standards for Community Noise Environment

# LOCAL POLICIES

The County has established policies concerning the generation and control of noise that could adversely affect its citizens and noise-sensitive land uses. The Napa County General Plan is a document required by state law that serves as the County's "blue print" for land use and development.

Napa County's noise ordinance prohibits "any loud, unnecessary or unusual noise which disturbs the peace and quiet of any neighborhood or which causes any discomfort or annoyance to any reasonable person of normal sensitiveness residing in the area."

#### NAPA COUNTY BASELINE DATA REPORT

The General Plan provides an overall framework for development in the County and protection of its natural and cultural resources by providing a comprehensive, long-term document that provides details for the physical development of the County, sets out policies, and identifies ways to put the policies into action. The Noise Element of the General Plan contains planning guidelines relating to noise and identifies goals and policies to support achievement of those goals. Noise Element guidelines relate primarily to land use compatibility with noise sources that are regulated at the local level, such as traffic,

The County's noise ordinance, Chapter 8.16 from the County's code, is the primary noise enforcement tool for noise generated by locally regulated noise sources such a mechanical equipment and

The following is a brief discussion of the General Plan policies and noise ordinance regulations implemented by the County to protect its citizens from the adverse impacts of noise.

# NOISE ELEMENT OF THE GENERAL PLAN

aircraft, and trains.

construction activity.

Land use

Residential

Commercial

Notes:

Industrial

The County's currently adopted Noise Element (amended on August 1, 1990, and reformatted in December 1996) establishes policies and regulations concerning the generation and control of noise that could adversely affect its citizens and noise-sensitive land uses. The County has established guidelines to assist in determining compatibility with surrounding land uses. These land use compatibility guidelines are summarized in Table 6-3.

The County's Noise Element further establishes noise level criteria for intermittent noise, where the "intermittent noise standards should receive special attention when projects are considered in 'Tentatively Compatible' or 'Normally Incompatible' areas as determined by the L<sub>dn</sub> criteria, but, ideally, they would be considered in all cases" (Napa County Conservation Development and Planning Department 2002). These standards are summarized in Table 6-4.

#### Table 6-3. Napa County Land Use Compatibility Guidelines (dBA, L<sub>dn</sub>)

| Completely Compatible | Tentatively Compatible | Normally Incompatible | Completely Incompatible |
|-----------------------|------------------------|-----------------------|-------------------------|
| <55                   | 55–60                  | 60–75                 | >75                     |
| <65                   | 65–75                  | 75–80                 | >80                     |
| <70                   | 70–80                  | 80-85                 | >85                     |

Completely compatible: The noise exposure is such that both the indoor and outdoor environments are pleasant. Tentatively compatible: The noise exposure is great enough to be of some concern, but common building construction practices will make the living indoor environment acceptable, even for sleeping quarters, and the outdoor environment will be reasonably pleasant for recreation and play.

Normally incompatible: The noise exposure is so severe that unusual and costly building construction is necessary to ensure some tranquility inside one's home, and barriers must be erected between the site and prominent noise sources to make the outdoor environment tolerable.

Completely incompatible: The noise exposure at the site is so severe that construction costs to make the indoor living environment acceptable would be prohibitive and the outdoor environment would still be intolerable.

Source: Napa County Conservation Development and Planning Department 2002.

**Table 6-4.** Napa County Recommended Maximum Interior Noise Level Criteria for Intermittent Noise

|    |                                           | Maximum Interior<br>Intermittent Noise |                                              |
|----|-------------------------------------------|----------------------------------------|----------------------------------------------|
|    | Generalized Land Use (occupancy)          | (dBA)                                  | Basis for Criteria                           |
| А. | Residential                               |                                        |                                              |
|    | 1. Living areas                           |                                        |                                              |
|    | a. Daytime (7:00 a.m. to 7:00 p.m.)       | 60                                     | Conversation – 9 ft – normal voice           |
|    | b. Nighttime (7:00 p.m. to 7:00 a.m.)     | 55                                     | Conversation – 10 ft. – normal voice         |
|    | 2. Sleeping areas                         | 50                                     | Sleeping                                     |
| В. | Residential                               |                                        |                                              |
|    | Multiple family apartments                | Same as A                              | Same as A                                    |
| C. | Educational facilities, etc.              |                                        |                                              |
|    | 1. Concert hall                           | 25                                     | Intrusion of noise may spoil artistic effect |
|    | 2. Legitimate theater                     | 30                                     | Intrusion of noise may spoil artistic effect |
|    | 3. School auditorium                      | 35                                     | Minimize intrusion into artistic performance |
|    | 4. School classroom                       | 55                                     | Speech communication – 20 ft. – raised voice |
|    | 5. School laboratory                      | 60                                     | Speech communication – 6 ft. – normal voice  |
|    | 6. Church sanctuaries                     | 45                                     | Speech communication – 50 ft. – raised voice |
|    | 7. Library                                | 55                                     | Speech communication – 3 ft. – normal voice  |
| D. | Recreational facilities                   |                                        |                                              |
|    | 1. Motion picture theater                 | 45                                     | Minimize intrusion into artistic performance |
|    | 2. Sports arena                           | 75                                     | Conversation – 2 ft. – raised voice          |
|    | 3. Bowling alley                          | 75                                     | Conversation – 2 ft. – raised voice          |
| E. | Commercial, miscellaneous                 |                                        |                                              |
|    | 1. Hotel, motel sleeping                  | 50                                     | Sleeping                                     |
|    | 2. Hospital sleeping                      | 50                                     | Sleeping                                     |
|    | 3. Executive offices, conference rooms    | 55                                     | Speech communication – 12 ft. – normal voice |
|    | 4. Staff offices                          | 60                                     | Speech communication – 6 ft. – normal voice  |
|    | 5. Sales, secretarial                     | 65                                     | Satisfactory telephone use                   |
|    | 6. Restaurants                            | 65                                     | Conversation – 4 ft. – normal voice          |
|    | 7. Markets, retail stores                 | 65                                     | Conversation – 4 ft. – normal voice          |
| F. | Light industrial                          |                                        |                                              |
|    | 1. Office areas                           | See E-3, -4, -5                        | See E-3, -4, -5                              |
|    | 2. Laboratory                             | 60                                     | Speech communications – 6 ft. – normal voice |
|    | 3. Machine shop                           | 75                                     | Speech communications – 3 ft. – raised voice |
|    | 4. Assembly, construction                 | 75                                     | Speech communications – 2 ft. – raised voice |
| G. | Heavy industrial                          |                                        |                                              |
|    | 1. Office areas                           | See E-3, -4, -5                        | See E-3, -4, -5                              |
|    | 2. Machine shop                           | 75                                     | Speech communications – 3 ft. – raised voice |
|    | 3. Assembly, construction                 | 75                                     | Speech communications – 2 ft. – raised voice |
|    | Source: Nana County Conservation Developm | ont and Planning Dona                  | artmont 2002                                 |

# COUNTY OF NAPA NOISE ORDINANCE

Napa County's noise ordinance, Chapter 8.16 from the County's code, prohibits "any loud, unnecessary or unusual noise which disturbs the peace and quiet of any neighborhood or which causes any discomfort or annoyance to any reasonable person of normal sensitiveness residing in the area." To help establish what constitutes a violation of the County's noise ordinance, the County has established maximum interior and exterior noise limits. The limits are summarized in Tables 6-5 and 6-6.

**Table 6-5.** Napa County Noise Ordinance Interior Noise Limits<sup>1</sup>

| Interior Noise Zone | Type of Land Use | Time Interval        | Allowable Noise Level (dBA) <sup>2</sup> |
|---------------------|------------------|----------------------|------------------------------------------|
| All                 | Residential      | 10:00 p.m.–7:00 a.m. | 55                                       |
|                     | _                | 7:00 a.m.–10:00 p.m. | 60                                       |

Notes:

The standard limits set forth in this table shall be reduced by 5 dB, but not to lower than 45 dB, for any offensive noise that contains a steady, audible tone such as a whine, screech, or hum, or that is a repetitive noise such as hammering or riveting, or that contains music or speech.

<sup>1</sup> As measured inside a neighboring receiving dwelling unit and applies to all properties within a designated zone.

<sup>2</sup> The following noise standards apply to the maximum allowable noise level.

• For cumulative periods more than 5 minutes in any hour, 0 dB shall be added to the standards above.

- For cumulative periods more than 1 minute in any hour, 5dB shall be added to the standards above.
- For any period of time, 10 dB shall be added to the standards above.
- For any period of time, the maximum measured ambient noise level may not be exceeded.

Table 6-6. Napa County Noise Ordinance Exterior Noise Limits<sup>1</sup>

|                                               |                      | Noise Level (dBA)<br>Noise Zone Classification <sup>2</sup> |          |       |
|-----------------------------------------------|----------------------|-------------------------------------------------------------|----------|-------|
| Receiving Land Use Category <sup>3</sup>      | Time Period          | Rural                                                       | Suburban | Urban |
| Residential <sup>4</sup>                      | 10:00 p.m.–7:00 a.m. | 45                                                          | 45       | 50    |
| Single and double <sup>4</sup>                | 7:00 a.m.–10:00 p.m. | 50                                                          | 55       | 60    |
| Residential multiple and country <sup>4</sup> | 10:00 p.m.–7:00 a.m. | 45                                                          | 50       | 55    |
|                                               | 7:00 a.m.–10:00 p.m. | 50                                                          | 55       | 60    |
| Commercial <sup>4</sup>                       | 10:00 p.m.–7:00 a.m. | _                                                           | 60       | _     |
|                                               | 10:00 p.m.–7:00 a.m. | —                                                           | 65       | —     |
| Industrial, including wineries                | Anytime              | _                                                           | 75       | —     |

Notes:

If the measurement location is on a boundary between two different zones, the sound level limit applicable to the quieter noise zone shall apply.

The standard limits set forth in this table shall be reduced by 5 dB, but not to lower than 45 dB, for any offensive noise that contains a steady, audible tone such as a whine, screech or hum, or that is a repetitive noise such as hammering or riveting, or that contains music or speech.

<sup>1</sup> Applies to unincorporated areas of the County, as measured on any other property, either incorporated or unincorporated.

- <sup>2</sup> The following noise standards apply to the maximum allowable noise level.
- For cumulative periods longer than 30 minutes in any hour, 0 dB shall be added to the standards above.
- For cumulative periods longer than 15 minutes in any hour, 5 dB shall be added to the standards above.
- For cumulative periods longer than 5 minutes in any hour, 10 dB shall be added to the standards above.
- For cumulative periods longer than 1 minute in any hour, 15 dB shall be added to the standards above.
- For any period of time, 20 dB shall be added to the standards above.
- For any period of time, the maximum measured ambient noise level may not be exceeded.
- <sup>3</sup> These standards apply to all properties within a designated zone.
- <sup>4</sup> If the measured ambient noise level differs from that identified as permissible by this table, the allowable noise exposure standard shall be the ambient noise level.



Sensitive receptors — Places where people live, sleep, recreate, worship, and study are generally considered sensitive to noise because intrusive noise can be disruptive to these activities.



Napa County Noise Ordinance prohibits construction activities between 7:00 p.m. and 7:00 a.m. Domestic power tool use is prohibited between 10:00 p.m. and 7:00 a.m.

To control noise from construction activities, the County has established noise limits for construction activities (Table 6-7). The County's ordinance further prohibits the use of any tools or equipment used in construction, drilling, repair, alteration, or demolition work between the hours of 7:00 p.m. and 7:00 a.m. to prevent construction activity-related noise from creating a noise disturbance across a residential or commercial real property line. However, the operation of domestic power tools or emergency work of public service utilities or by variance issued by the appropriate authority is exempt from this stipulation. The use of domestic power tools (i.e., any mechanically powered saw, sander, drill, grinder, lawn or garden tool, or similar tool) is prohibited between the hours of 10:00 p.m. and 7:00 a.m. so as to not create a noise disturbance across a residential or commercial property line. Any motor, machinery, or pump (i.e., swimming pool equipment, etc.) shall be sufficiently enclosed or muffled and maintained so as to not exceed the County's noise standards summarized in Tables 6-5 and 6-6.

#### Table 6-7. Napa County Noise Ordinance Noise Limits for Construction Activities

| Interior noise zone           | Residential | Commercial | Industrial |
|-------------------------------|-------------|------------|------------|
| Daily: 7:00 a.m. to 7:00 p.m. | 75 dBA      | 80 dBA     | 85 dBA     |
| Daily: 7:00 p.m. to 7:00 a.m. | 60 dBA      | 65 dBA     | 70 dBA     |



Loading, unloading, opening, closing, or other handling of boxes, crates, containers, building materials, garbage cans, or similar objects in such a manner as to cause a noise disturbance across a residential property line or violate the County's noise standards summarized in Tables 6-5 and 6-6 is prohibited between the hours of 10:00 p.m. and 6:00 a.m. The use of loudspeakers, amplified sound devices, radios, television sets, musical instruments and similar devices, and powered motor vehicles are also subject to the County's noise standards summarized in Tables 6-5 and 6-6.

The County has exempted the following from compliance with the noise ordinance.

- Sound associated with emergency work or alerting persons to the existence of an emergency.
- Warning devices necessary for the protection of public safety (e.g., police, fire, and ambulance sirens, and train horns).
- Temporary outdoor activities and special events on roadways, provided that the events are conducted in accordance with the licenses issued for them.

- County's noise ordinance.

# **METHODOLOGY**

noise conditions.

- quantified.

# DEFINITION OF STUDY AREA

contained within the County.

# **RESOURCES CONSULTED**

Existing studies and relevant information regarding noise and environmental acoustics were reviewed. Those sources are cited where appropriate, and full references are provided below in the *References* Cited section of this chapter.

# **EXISTING NOISE CONDITIONS**

Napa County.



Warning devices necessary for the protection of public safety, such as emergency vehicle sirens and train horns, are not required to comply with the County noise ordinance.

#### NAPA COUNTY BASELINE DATA REPORT

 All mechanical devices, apparatus or equipment associated with agricultural operations conducted on agricultural property. However, wineries are not exempt, and are subject to the provisions of the

Commercial and industrial operations in existence prior to the date of adoption of the ordinance codified in Chapter 8.16 of the General Plan, if in compliance with local zoning statutes, shall be granted a 5-year period from the date of adoption within which to comply with the provisions of Chapter 8.16. If, at the end of the 5-year period, it can be shown that compliance with the provisions in this chapter constitutes a hardship in terms of technical and economic feasibility, a variance may be granted until such time as compliance may be effected.

For this BDR analysis of noise in Napa County, the following techniques were used to identify existing

Noise sources were identified, and, to the extent possible, noise from these sources was

Existing land uses that are sensitive to noise were identified.

Conflicts between existing noise sources and noise-sensitive land uses were identified.

The study area for this noise analysis is Napa County, and includes all jurisdictions and municipalities

This section identifies noise-sensitive land uses, major noise sources, and existing noise conditions in

# NOISE-SENSITIVE LAND USES

General noise practice identifies noise-sensitive land uses as being land uses where noise can adversely affect use of the land. These are often places where people live, sleep, recreate, worship, and study; they are generally considered sensitive to noise because intrusive noises can be disruptive to these activities. The following specific areas are considered sensitive to noise.

- Residences.
- Hospitals, healthcare facilities, and assisted living facilities.
- Parks, wildlife areas, and recreation areas.
- Places of worship.
- Libraries.
- Schools.

Noise-sensitive areas have been identified in the County based on consultation with County staff and a review of web resources. Noise-sensitive resources are discussed by category in the following sections.

# RESIDENCES

Napa County is generally rural, with concentrated populations of residences located primarily within cities and towns located within the County. These cities and towns are indicated in Map 6-1. Maps 6-2 and 6-3 show the location of noise-sensitive land uses within each of the cities and towns. (All maps appear at the end of the chapter.)

- Map 6-2: Angwin, Calistoga, Deer Park, St. Helena.
- Map 6-3: American Canyon, Napa, Yountville.

# HOSPITALS, HEALTHCARE FACILITIES, AND ASSISTED LIVING FACILITIES

Hospitals, healthcare facilities, and assisted living facilities within the County are identified in Appendix Noise-A. The locations of these facilities are shown in Maps 6-1 through 6-3.

# PARKS, WILDLIFE AREAS, AND RECREATION AREAS

Public parks, wildlife areas, and other recreation areas, including campgrounds and picnic areas, within the County are identified in Appendix Noise-B. The locations of these areas are shown in Maps 6-1 through 6-3.

# PLACES OF WORSHIP

Churches, synagogues, and other places of worship within the County are identified in Appendix Noise-C. The locations of these facilities are shown in Maps 6-1 through 6-3.

## LIBRARIES

Libraries within the County are identified in Appendix Noise-D. The locations of these facilities are shown in Maps 6-1 through 6-3.

## SCHOOLS

Public and private schools within the County are identified in Appendix Noise-E. The locations of these facilities are shown in Maps 6-1 through 6-3.

# MAJOR NOISE SOURCES (MOBILE AND STATIONARY)

The dominant sources of noise in the County are related to transportation, and include automobile and truck traffic, aircraft, and trains. Stationary sources in the County include construction sites, agricultural activities, and commercial and industrial facilities.

# **ROADWAY TRAFFIC**

Interstate 80 (I-80), State Route 12 (SR 12), SR 29, SR 121, SR 128, and Silverado Trail are major sources of traffic noise in the County. Some County roads, primarily those that serve as collectors and arterials, are also significant sources of traffic noise. Major county roads and freeways that currently have traffic volumes in excess of 3,000 vehicles per day are listed in Table 6-8.

Noise levels produced by traffic on state highways and county roads with more than 3,000 vehicles per day have been calculated using the FHWA Traffic Noise Prediction Model (FHWA-ROAD-77-108). The model estimates traffic noise levels based on roadway geometrics; traffic volumes for automobiles, medium trucks (vehicles with two axles and six tires), and heavy trucks (vehicles with three or more axles); vehicle speeds; and a noise-attenuation-rate parameter. A computer-based implementation of the model was used to directly calculate  $L_{dn}$  values based on hourly traffic patterns, hourly truck percentages, and posted speeds.



Noise-sensitive land uses are areas where noise can adversely affect use of the land, including residences, health car facilities, recreation areas, places of worship, libraries, and schools.



I-80, SR 12, SR 9, SR 121, SR 128, and Silverado Trail are major sources of traffic noise in the County.

# Table 6-8. Summary of Traffic Data and Noise Modeling Results for County Roads and Freeways for Existing Conditions

| Roadway           | Segment Limit North/East     | Segment Limit South/West | Number of Lanes | Daily Traffic Volume | Speed (mph) | L <sub>dn</sub> at 100 Feet | Distance to 70 L <sub>dn</sub> contour (feet) | Distance to 65 L <sub>dn</sub><br>contour (feet) | Distance to 60 L <sub>dn</sub> contour (feet) |
|-------------------|------------------------------|--------------------------|-----------------|----------------------|-------------|-----------------------------|-----------------------------------------------|--------------------------------------------------|-----------------------------------------------|
| State Highway 29  | American Canyon Rd           | Napa/Solano Co Line      | 4               | 35,695               | 55          | 72                          | 140                                           | 301                                              | 650                                           |
| State Highway 29  | Green Island Rd              | American Canyon Rd       | 4               | 47,664               | 55          | 73                          | 170                                           | 366                                              | 788                                           |
| State Highway 29  | South Kelly Rd               | Green Island Rd          | 4               | 44,391               | 50          | 72                          | 143                                           | 307                                              | 662                                           |
| State Highway 29  | Jamieson Cyn Rd (SR 12)      | South Kelly Rd           | 4               | 44,566               | 60          | 74                          | 191                                           | 411                                              | 885                                           |
| State Highway 29  | Kelly Rd                     | Jamieson Cyn Rd (SR 12)  | 4               | 65,211               | 60          | 76                          | 247                                           | 532                                              | 1145                                          |
| State Highway 29  | Napa-Vallejo Hwy (SR 221)    | Kelly Rd                 | 5               | 27,288               | 60          | 72                          | 138                                           | 297                                              | 641                                           |
| State Highway 29  | Napa-Vallejo Hwy (SR 221)    | Carneros Hwy(SR 121/12)  | 4               | 43,159               | 60          | 74                          | 195                                           | 420                                              | 904                                           |
| State Highway 29  | Imola Ave (SR 121)           | Carneros Hwy(SR 121/12)  | 4               | 34,199               | 60          | 73                          | 153                                           | 330                                              | 711                                           |
| State Highway 29  | Old Sonoma Rd                | Imola Ave                | 4               | 52,855               | 60          | 74                          | 196                                           | 422                                              | 910                                           |
| State Highway 29  | Lincoln Ave                  | Old Sonoma Rd            | 4               | 52,380               | 60          | 74                          | 186                                           | 400                                              | 862                                           |
| State Highway 29  | Trancas St                   | Lincoln Ave              | 4               | 45,105               | 60          | 73                          | 168                                           | 362                                              | 780                                           |
| State Highway 29  | Salvador Ave                 | Trancas St               | 4               | 37,678               | 55          | 72                          | 131                                           | 282                                              | 607                                           |
| State Highway 29  | Oak Knoll Ave                | Salvador Ave             | 4               | 28,677               | 60          | 71                          | 124                                           | 268                                              | 577                                           |
| State Highway 29  | California Dr                | Oak Knoll Ave            | 4               | 29,321               | 65          | 72                          | 143                                           | 308                                              | 663                                           |
| State Highway 29  | Madison St                   | California Dr            | 4/2             | 29,321               | 50          | 70                          | 96                                            | 207                                              | 446                                           |
| State Highway 29  | Oakville Grade               | Madison St               | 2               | 23,417               | 55          | 70                          | 95                                            | 205                                              | 442                                           |
| State Highway 29  | Rutherford Cross Rd (SR 128) | Oakville Grade           | 2               | 22,892               | 55          | 70                          | 104                                           | 224                                              | 483                                           |
| State Highway 29  | Zinfandel Ln                 | Rutherford Cross Rd      | 2               | 20,944               | 50          | 70                          | 96                                            | 207                                              | 445                                           |
| State Highway 29  | Chaix Ln                     | Zinfandel Ln             | 2               | 23,154               | 50          | 70                          | 103                                           | 221                                              | 476                                           |
| State Highway 29  | Pope St                      | Chaix Ln                 | 2               | 20,070               | 35          | 67                          | 63                                            | 136                                              | 294                                           |
| State Highway 29  | Madrona St                   | Pope St                  | 2               | 18,099               | 20          | 65                          | 44                                            | 95                                               | 204                                           |
| State Highway 29  | Deer Park Rd                 | Madrona St               | 2               | 17,700               | 45          | 68                          | 72                                            | 155                                              | 333                                           |
| State Highway 29  | Lodi Lane                    | Deer Park Rd             | 2               | 15,257               | 50          | 68                          | 74                                            | 159                                              | 342                                           |
| State Highway 29  | Dunaweal Ln                  | Lodi Ln                  | 2               | 14,865               | 50          | 68                          | 72                                            | 156                                              | 336                                           |
| State Highway 29  | Lincoln Ave (SR 29)          | Dunaweal Ln              | 2               | 11,456               | 50          | 67                          | 61                                            | 131                                              | 283                                           |
| State Highway 29  | Silverado Trail              | Foothill Blvd (SR 128)   | 2               | 9,914                | 20          | 59                          | 19                                            | 40                                               | 86                                            |
| State Highway 29  | Tubbs Ln                     | Silverado Trail          | 2               | 4,358                | 45          | 61                          | 27                                            | 57                                               | 123                                           |
| State Highway 29  | Napa/Lake Co Line            | Tubbs Ln                 | 2               | 7,458                | 30          | 62                          | 28                                            | 61                                               | 132                                           |
| Napa Vallejo Hwy  | Kaiser Rd                    | Highway 29(SR 29/12)     | 4               | 30,857               | 60          | 72                          | 143                                           | 308                                              | 664                                           |
| Napa Vallejo Hwy  | Silverado Trail              | Streblow Dr              | 4               | 37,438               | 30          | 69                          | 83                                            | 179                                              | 386                                           |
| State Highway 121 | Coombsville Rd               | Soscol Ave               | 2               | 13,146               | 40          | 65                          | 45                                            | 97                                               | 208                                           |
| State Highway 121 | Lincoln Ave                  | Coombsville Rd           | 2               | 14,812               | 35          | 64                          | 41                                            | 89                                               | 193                                           |
| State Highway 121 | Hagen Rd                     | Lincoln Ave              | 2               | 18,030               | 40          | 66                          | 55                                            | 119                                              | 257                                           |
| State Highway 121 | Monticello Rd                | Hagen Rd                 | 2               | 13,757               | 40          | 65                          | 46                                            | 100                                              | 215                                           |
| State Highway 121 | Vichy Ave                    | Trancas St               | 2               | 13,166               | 45          | 66                          | 56                                            | 120                                              | 258                                           |
| State Highway 121 | Wooden Valley Rd             | Vichy Ave                | 2               | 4,107                | 30          | 58                          | 15                                            | 33                                               | 71                                            |
| Silverado Trl     | Hardman Ave                  | Trancas St               | 2               | 9,723                | 60          | 67                          | 66                                            | 143                                              | 308                                           |
| Silverado Trl     | 0ak Knoll Ave                | Hardman Ave              | 2               | 11,365               | 60          | 68                          | 74                                            | 158                                              | 341                                           |
| Silverado Trl     | Yountville Cross Rd          | Oak Knoll Ave            | 2               | 12,743               | 60          | 68                          | 79                                            | 171                                              | 368                                           |
| Silverado Trl     | Sage Canyon Rd (SR 128)      | Yountville Cross Rd      | 2               | 13,524               | 60          | 69                          | 83                                            | 178                                              | 383                                           |
| Silverado Trl     | Zinfandel Ln                 | Sage Canyon Rd (SR 128)  | 2               | 11,049               | 60          | 68                          | 72                                            | 155                                              | 335                                           |
| Silverado Trl     | Pope St                      | Zinfandel Ln             | 2               | 9,282                | 60          | 67                          | 64                                            | 138                                              | 298                                           |

# NAPA COUNTY BASELINE DATA REPORT

Page 1 of 3

# NAPA COUNTY BASELINE DATA REPORT

Table 6-8. Continued

| Roadway            | Segment Limit North/East  | Segment Limit South/West    | Number of Lanes | Daily Traffic Volume | Speed (mph)     | L <sub>dn</sub> at 100 Feet | Distance to 70 L <sub>dn</sub> contour (feet) | Distance to 65 L <sub>dn</sub><br>contour (feet) | Distance to 60 L <sub>dn</sub> contour (feet) |
|--------------------|---------------------------|-----------------------------|-----------------|----------------------|-----------------|-----------------------------|-----------------------------------------------|--------------------------------------------------|-----------------------------------------------|
| Silverado Trl      | Deer Park Rd              | Pope St                     | 2               | 8,640                | 60              | 67                          | 61                                            | 132                                              | 284                                           |
| Silverado Trl      | Bale Ln                   | Deer Park Rd                | 2               | 5,591                | 50              | 63                          | 36                                            | 77                                               | 166                                           |
| Silverado Trl      | Calistoga City Limits     | Bale Ln                     | 2               | 4,735                | 50              | 63                          | 32                                            | 69                                               | 149                                           |
| Silverado Trl      | Calistoga City Limits     | Lincoln Ave (SR 29)         | 2               | 5,149                | 55              | 64                          | 38                                            | 83                                               | 179                                           |
| State Highway 128  | Napa/Sonoma Co Line       | Tubbs Ln                    | 2               | 3,402                | 30              | 59                          | 20                                            | 43                                               | 92                                            |
| State Highway 128  | Tubbs Ln                  | Petrified Forest Rd         | 2               | 11,727               | 40              | 66                          | 51                                            | 109                                              | 235                                           |
| State Highway 128  | Petrified Forest Rd       | Lincoln Ave (SR 29)         | 2               | 12,928               | 35              | 65                          | 47                                            | 101                                              | 219                                           |
| State Highway 128  | Napa River                | St Helena Hwy (SR 29)       | 2               | 3,262                | 35              | 58                          | 16                                            | 35                                               | 76                                            |
| State Highway 12   | Old Sonoma Rd             | Napa/Sonoma Co Line         | 2               | 30,793               | 50              | 71                          | 124                                           | 267                                              | 576                                           |
| State Highway 12   | Highway 29 (SR 29/12)     | Old Sonoma Rd               | 4               | 31,517               | 55              | 72                          | 141                                           | 305                                              | 657                                           |
| State Highway 12   | Kelly Rd                  | Napa-Vallejo Hwy (SR 29)    | 4               | 29,022               | 40              | 70                          | 93                                            | 200                                              | 431                                           |
| State Highway 12   | Lynch Rd                  | Kelly Rd                    | 4               | 28,597               | 55              | 72                          | 133                                           | 286                                              | 615                                           |
| State Highway 12   | Napa/Solano Co Line       | Lynch Rd                    | 2               | 31,861               | 55              | 72                          | 142                                           | 307                                              | 661                                           |
| Flosden Rd         | American Canyon Rd        | Napa/Solano Co Line         | 2               | 15,855               | 45              | 67                          | 63                                            | 136                                              | 292                                           |
| Interstate 80      | American Canyon Rd        | Napa/Solano Co Line         | 4               | 128,000              | 65 <sup>1</sup> | 79                          | 398                                           | 857                                              | 1847                                          |
| American Canyon Rd | Napa-Vallejo Hwy (SR 29)  | Wetlands Edge Dr            | 4               | 7,150                | 35 <sup>1</sup> | 61                          | 24                                            | 51                                               | 111                                           |
| American Canyon Rd | Flosden Rd                | Napa-Vallejo Hwy (SR 29)    | 2               | 29,956               | 35              | 68                          | 72                                            | 155                                              | 334                                           |
| American Canyon Rd | I-80                      | Flosden Rd                  | 2               | 22,381               | 55              | 70                          | 103                                           | 221                                              | 476                                           |
| Eucalyptus Dr      | Napa-Vallejo Hwy (SR 29)  | Wetlands Edge Dr            | 2               | 7,137                | 25              | 57                          | 14                                            | 31                                               | 67                                            |
| Washington St      | Madison St                | California Dr               | 2               | 5,208                | 25              | 56                          | 12                                            | 25                                               | 54                                            |
| Green Island Rd    | Napa-Vallejo Hwy (SR 29)  | American Canyon City Limits | 2               | 6,527                | 35              | 59                          | 19                                            | 42                                               | 90                                            |
| S Kelly Rd         | Jamieson Canyon Rd (SR12) | Highway 29                  | 2               | 3,430                | 50              | 60                          | 22                                            | 47                                               | 102                                           |
| N Kelly Rd         | Napa-Vallejo Hwy (SR 29)  | Jamieson Canyon Rd (SR12)   | 2               | 11,870               | 60              | 68                          | 68                                            | 147                                              | 318                                           |
| Airport Blvd       | Napa-Vallejo Hwy (SR 29)  | End                         | 4               | 5,574                | 35 <sup>1</sup> | 59                          | 17                                            | 37                                               | 81                                            |
| Vista Point Dr     | Napa-Vallejo Hwy (SR 221) | Napa-Vallejo Hwy (SR 29)    | 2               | 3,541                | 45              | 59                          | 19                                            | 41                                               | 88                                            |
| Cuttings Wharf Rd  | Carneros Hwy (SR 121/12)  | End                         | 2               | 3,002                | 55              | 61                          | 24                                            | 51                                               | 110                                           |
| Old Sonoma Rd      | Buhman Ave                | Carneros Hwy (SR 121/12)    | 2               | 3,981                | 55              | 63                          | 32                                            | 70                                               | 150                                           |
| Old Sonoma Rd      | Congress Valley Rd        | Buhman Ave                  | 2               | 3,163                | 50              | 61                          | 25                                            | 53                                               | 114                                           |
| Old Sonoma Rd      | Napa City Limits          | Congress Valley Rd          | 2               | 7,494                | 55              | 65                          | 49                                            | 107                                              | 229                                           |
| Old Sonoma Rd      | Freeway Dr                | Napa City Limits            | 2               | 8,990                | 35              | 63                          | 32                                            | 69                                               | 150                                           |
| Buhman Ave         | Browns Valley Rd          | Napa City Limits            | 2               | 7,780                | 30              | 59                          | 19                                            | 41                                               | 89                                            |
| State Highway 121  | Napa-Vallejo Hwy (SR 221) | Highway 29                  | 4               | 26,007               | 35 <sup>1</sup> | 67                          | 65                                            | 141                                              | 304                                           |
| Imola Ave          | Napa City Limits          | Soscol Ave (SR121)          | 2               | 4,947                | 35 <sup>1</sup> | 60                          | 22                                            | 47                                               | 100                                           |
| Soscol Ave         | First St                  | Silverado Trail             | 4               | 31,900               | 35 <sup>1</sup> | 68                          | 75                                            | 162                                              | 348                                           |
| Soscol Ave         | Lincoln Ave               | First St                    | 4               | 21,571               | 35 <sup>1</sup> | 66                          | 58                                            | 124                                              | 268                                           |
| Soscol Ave         | Trancas St                | Lincoln Ave                 | 4               | 23,321               | 35 <sup>1</sup> | 67                          | 61                                            | 131                                              | 282                                           |
| Partrick Rd        | Napa City Limit           | Highway 29                  | 2               | 24,635               | 35 <sup>1</sup> | 65                          | 47                                            | 101                                              | 217                                           |
| 1st St             | Silverado Trail (SR 121)  | Highway 29                  | 2               | 6,243                | 25 <sup>1</sup> | 57                          | 13                                            | 28                                               | 61                                            |
| 2nd St             | Silverado Trail (SR 121)  | Highway 29                  | 2               | 11,457               | 25 <sup>1</sup> | 59                          | 20                                            | 43                                               | 92                                            |
| Coombsville Rd     | First St                  | Silverado Trail (SR 121)    | 2               | 9,244                | 40 <sup>1</sup> | 64                          | 38                                            | 82                                               | 177                                           |
| Coombsville Rd     | Fourth Ave                | First St                    | 2               | 4,327                | 40              | 60                          | 23                                            | 50                                               | 107                                           |
| Lincoln Ave        | Silverado Trail(SR 121)   | Highway 29                  | 4               | 23,363               | 35 <sup>1</sup> | 67                          | 61                                            | 131                                              | 283                                           |
| Redwood Rd         | Browns Valley Rd          | Dry Creek Rd                | 2               | 8,118                | 35              | 62                          | 30                                            | 65                                               | 140                                           |

| Page | 2 | of | 3 |  |
|------|---|----|---|--|
|------|---|----|---|--|

#### Table 6-8. Continued

| Roadway             | Segment Limit North/East | Segment Limit South/West  | Number of Lanes | Daily Traffic Volume | Speed (mph)     | L <sub>dn</sub> at 100 Feet | Distance to 70 L <sub>dn</sub> contour (feet) | Distance to 65 L <sub>dn</sub><br>contour (feet) | Distance to 60 L <sub>dn</sub> contour (feet) |
|---------------------|--------------------------|---------------------------|-----------------|----------------------|-----------------|-----------------------------|-----------------------------------------------|--------------------------------------------------|-----------------------------------------------|
| Redwood Rd          | Highway 29               | Dry Creek Rd              | 4               | 9,273                | 35 <sup>1</sup> | 63                          | 33                                            | 71                                               | 153                                           |
| Trancas St          | Soscol Ave               | Highway 29                | 4               | 25,826               | 45 <sup>1</sup> | 69                          | 87                                            | 188                                              | 404                                           |
| Trancas St          | Monticello Rd (SR 121)   | Soscol Ave                | 4               | 14,649               | 45              | 67                          | 60                                            | 129                                              | 277                                           |
| Hagen Rd            | Vichy Ave                | Napa City Limits          | 2               | 4,471                | 45              | 60                          | 22                                            | 48                                               | 103                                           |
| Dry Creek Rd        | Napa City Limit          | Redwood Rd                | 2               | 9,688                | 40              | 62                          | 31                                            | 66                                               | 143                                           |
| Salvador Ave        | Napa City Limit          | Highway 29                | 2               | 3,479                | 35              | 59                          | 17                                            | 37                                               | 79                                            |
| Salvador Ave        | Big Ranch Rd             | Napa City Limit           | 2               | 4,178                | 40              | 59                          | 18                                            | 38                                               | 82                                            |
| Big Ranch Rd        | Salvador Ave             | Trancas St                | 2               | 9,323                | 55              | 66                          | 57                                            | 123                                              | 265                                           |
| Big Ranch Rd        | Oak Knoll Ave            | Salvador Ave              | 2               | 4,791                | 60              | 64                          | 41                                            | 89                                               | 192                                           |
| Vichy Ave           | Monticello Rd (SR 121)   | Hagen Rd                  | 2               | 3,136                | 40              | 57                          | 15                                            | 31                                               | 67                                            |
| Atlas Peak Rd       | Old Soda Springs Rd      | Monticello Rd (SR 121)    | 2               | 6,214                | 45              | 62                          | 28                                            | 59                                               | 128                                           |
| Oak Knoll Ave       | Big Ranch Rd             | Highway 29                | 2               | 3,869                | 50              | 61                          | 24                                            | 51                                               | 111                                           |
| Oak Knoll Ave       | Silverado Trail          | Big Ranch Rd              | 2               | 3,082                | 50              | 60                          | 20                                            | 44                                               | 95                                            |
| Yountville Cross Rd | Silverado Trail          | Yountville Town Limits    | 2               | 3,875                | 50              | 61                          | 24                                            | 51                                               | 111                                           |
| Zinfandel Ln        | Silverado Trail          | St Helena Hwy (SR 29&128) | 2               | 3,071                | 55              | 62                          | 27                                            | 59                                               | 127                                           |
| Spring St           | Main St (SR 29/128)      | St Helena City Limit      | 2               | 3,010                | 30              | 55                          | 10                                            | 22                                               | 47                                            |
| Pope St             | Silverado Trail          | Main St (SR 29/128)       | 2               | 5,210                | 30              | 60                          | 22                                            | 48                                               | 104                                           |
| Howell Mountain Rd  | Cold Springs Rd          | Deer Park Rd              | 2               | 5,515                | 45              | 61                          | 25                                            | 55                                               | 118                                           |
| College Ave         | Howell Mt Rd             | White Cottage Rd          | 2               | 3,454                | 25              | 54                          | 9                                             | 19                                               | 41                                            |
| Spring Mountain Rd  | Main St (SR 29/128)      | St Helena City Limit      | 2               | 5,250                | 25              | 56                          | 12                                            | 25                                               | 55                                            |
| Deer Park Rd        | Silverado Trail          | St Helena Hwy(SR 29/128)  | 2               | 4,956                | 60              | 64                          | 38                                            | 82                                               | 178                                           |
| Deer Park Rd        | Sanitarium Rd (North)    | Silverado Trail           | 2               | 7,551                | 45              | 62                          | 31                                            | 68                                               | 146                                           |
| Deer Park Rd        | Howell Mountain Rd       | Sanitarium Rd (North)     | 2               | 11,025               | 45              | 64                          | 40                                            | 87                                               | 187                                           |
| Sanitarium Rd       | Deer Park Rd             | Deer Park Rd              | 2               | 5,379                | 35              | 58                          | 17                                            | 37                                               | 79                                            |
| Petrified Forest Rd | Franz Valley Rd          | Napa/Sonoma Co Line       | 2               | 7,995                | 45              | 63                          | 33                                            | 70                                               | 151                                           |
| Petrified Forest Rd | Foothill Blvd (SR 128)   | Franz Valley School Rd    | 2               | 10,890               | 35              | 62                          | 27                                            | 59                                               | 126                                           |
| Tubbs Ln            | Highway 29               | Highway 128               | 2               | 5,638                | 55              | 64                          | 41                                            | 88                                               | 190                                           |
| Solano Ave          | Napa City Limits         | Redwood Rd                | 2               | 4,895                | 50              | 62                          | 28                                            | 60                                               | 130                                           |
|                     |                          |                           |                 |                      |                 |                             |                                               |                                                  |                                               |

Notes:

Vehicle mix for all roadways are assumed to be 90% automobiles, 5% medium trucks, and 5% heavy trucks.<sup>2</sup> <sup>1</sup> Roadway speeds unavailable; assumed speed.

<sup>2</sup> Source: California Department of Transportation 2005; Heide and Sheppard pers. comms.

# NAPA COUNTY BASELINE DATA REPORT

# Page 3 of 3

Truck percentages assumed in the analysis are based on data provided by the California Department of Transportation (Caltrans) and the County; Caltrans provided traffic data for highways, while the County provided traffic data on County roadways (California Department of Transportation 2005; Heide and Sheppard pers. comms.). Based on this information, it was assumed that the vehicle mix for all roadways are assumed to be 90% automobiles, 5% medium trucks, and 5% heavy trucks. These data and calculated noise levels are summarized in Table 6-8. Calculated L<sub>dn</sub> values at 100 feet from the roadway centerline along with distances to the 70-, 65-, and 60-dB L<sub>dn</sub> contours are also presented in Table 6-8. The distances to the 70-, 65-, and 60-dB  $L_{dn}$  contours are also presented in Maps 6-4 through 6-6.

# AIRCRAFT

Aircraft operations in the vicinity of airports can be a significant source of noise. There are several airports in the County, but the two main airports in operation in the County are the Napa County Airport in Napa and ANGWIN-Virgil O Parrett Field in Angwin. There are also a number of local landing strips located in the proximity of the County. The following airports are located in the County.

- Napa County Airport, Airport Industrial Park, Napa.
- Angwin-Virgil O Parrett Field, Angwin.
- Calistoga Gliderport, 1546 Lincoln Ave, Calistoga.
- Inglenook Ranch Airport, Rutherford.
- Moskowite Airport, Capell Valley.
- Mysterious Valley Airport, Walter Springs.
- Pope Valley Airport, St. Helena.
- River Meadow Farm Heliport, Rutherford.
- Lake Berryessa Seaplane Base, Chiles Valley.

In July 2005, the Napa County Airport Master Plan Update was prepared. The existing 55-, 60-, and 65-dBA CNEL contours for the airport are depicted in Map 6-7, and the projected 55-, 60-, and 65-dBA contours for 2022 are depicted in Map 6-8. The contours indicated in Maps 6-7 and 6-8 are based on the aircraft activity forecast from the airport's Master Plan Update, which is summarized in Table 6-9. The latest year for which noise contours are available for Angwin-Virgil O Parrett Field is 1996; those contours are presented in Map 6-9.

Activity at small private landing strips is highly variable. In cases where the strip is used primarily for crop-dusting (sulfur application), which occurred on approximately 4,500 acres of vineyards throughout the County in 2005, the use will vary with the farming season. Because use of these strips is highly variable, it is not practical to develop CNEL contours. However, data are available on typical sound levels generated by small aircraft as a function of distance. These data are summarized in Table 6-10.

| 200Based aircraftAircraft typesSingle-engineTwin-engineTurbopropJetsHelicoptersTotal aircraft2Storage DemandApronHangar space11Total aircraft2Transient aircraftPeak parking demandAnnual aircraft operationsAircraft mixSingle-engine pistonAiscraft mixSingle-engine piston15,6Twin-engine turboprop13,1Small jet (e.g., Citation)5,6Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operationLocal (touch-and-go)(51,0)Itinerant61,0                                                                                                                                                                                                                                                                                                                                             |            | -TUJECIEU ZUZ I |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|
| Based aircraft         Aircraft types         Single-engine       1         Twin-engine       1         Turboprop       Jets         Helicopters       2         Storage Demand       2         Apron       1         Hangar space <sup>1</sup> 1         Total aircraft       2         Transient aircraft       2         Peak parking demand       2         Annual aircraft operations       3         Aircraft mix       5         Single-engine piston       15,6         Twin-engine turboprop       13,1         Small jet (e.g., Citation)       5,6         Medium jet (e.g., Falcon 900)       1,2         Large jet (e.g., Gulfstream)       1,8         Helicopters       2,5         Total       126,00         Type of operation       61,00         Local (touch-and-go)       65,00         Itinerant       61,00 | 1 Low      | High            |
| Aircraft types1Single-engine1Twin-engine1TurbopropJetsHelicopters2Total aircraft2Storage DemandApronHangar space11Total aircraft2Transient aircraft2Peak parking demandAnnual aircraftAircraft mixSingle-engine piston86,0Twin-engine piston15,6Twin-engine piston15,6Twin-engine turboprop13,1Small jet (e.g., Citation)5,6Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operation40,0Local (touch-and-go)65,0Itiperant61,0                                                                                                                                                                                                                                                                                                                                                      |            |                 |
| Single-engine1Twin-engineTurbopropJetsHelicoptersTotal aircraft2Storage DemandApronHangar space11Total aircraft2Transient aircraft2Transient aircraft2Peak parking demandAnnual aircraft operationsAircraft mix5,6Twin-engine piston15,6Twin-engine turboprop13,1Small jet (e.g., Citation)5,6Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operation65,0Itinerant61,0                                                                                                                                                                                                                                                                                                                                                                                                            |            |                 |
| Twin-engineTurbopropJetsHelicoptersTotal aircraft2Storage DemandApronHangar space11Total aircraftPeak parking demandAnnual aircraftPeak parking demandAnnual aircraft operationsAircraft mixSingle-engine piston15,6Twin-engine turboprop13,1Small jet (e.g., Citation)5,6Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operationLocal (touch-and-go)(61,0)                                                                                                                                                                                                                                                                                                                                                                                                                       | 83 230     | 260             |
| TurbopropJetsHelicoptersTotal aircraft2Storage DemandApronHangar space11Total aircraft2Transient aircraft2Peak parking demandAnnual aircraft operationsAircraft mixSingle-engine piston86,0Twin-engine piston15,6Twin-engine turboprop13,1Small jet (e.g., Citation)5,6Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operation65,0Itinerant61,0                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 20      | 24              |
| Jets<br>Helicopters<br><i>Total aircraft</i> 2<br>Storage Demand<br>Apron<br>Hangar space <sup>1</sup> 1<br><i>Total aircraft</i> 2<br><b>Transient aircraft</b><br>Peak parking demand<br><b>Annual aircraft operations</b><br>Aircraft mix<br>Single-engine piston 86,0<br>Twin-engine piston 15,6<br>Twin-engine piston 15,6<br>Twin-engine turboprop 13,1<br>Small jet (e.g., Citation) 5,6<br>Medium jet (e.g., Falcon 900) 1,2<br>Large jet (e.g., Gulfstream) 1,8<br>Helicopters 2,5<br><i>Total</i> 126,0<br>Type of operation<br>Local (touch-and-go) 65,0                                                                                                                                                                                                                                                                | 13 22      | 30              |
| HelicoptersTotal aircraft2Storage DemandApronHangar space11Total aircraft2Transient aircraft2Peak parking demandAnnual aircraft operationsAircraft mixSingle-engine pistonSingle-engine piston15,6Twin-engine turboprop13,1Small jet (e.g., Citation)5,6Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operation65,0Itioerant61,0                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 12       | 20              |
| Total aircraft2Storage DemandApronApron1Hangar space11Total aircraft2Transient aircraftPeak parking demandAnnual aircraft operationsAircraft mixSingle-engine piston86,0Twin-engine piston15,6Twin-engine turboprop13,1Small jet (e.g., Citation)5,6Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operation65,0Itioerant61,0                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 6        | 6               |
| Storage Demand<br>Apron1Hangar space11Total aircraft2Transient aircraft2Peak parking demandAnnual aircraft operationsAircraft mixSingle-engine pistonAircraft mix5,6Twin-engine turboprop13,1Small jet (e.g., Citation)5,6Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operation65,0Local (touch-and-go)65,0Itinerant61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 290     | 340             |
| ApronHangar space11Total aircraft2Transient aircraft2Peak parking demandAnnual aircraft operationsAircraft mixSingle-engine pistonAircraft mix5,6Twin-engine turboprop13,1Small jet (e.g., Citation)5,6Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operation65,0Linerant61,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                 |
| Hangar space11Total aircraft2Transient aircraft2Peak parking demandAnnual aircraft operationsAircraft mixSingle-engine pistonAircraft mix5,6Twin-engine turboprop13,1Small jet (e.g., Citation)5,6Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operation65,0Itinerant61,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 87         |                 |
| Total aircraft2Transient aircraft2Peak parking demandAnnual aircraft operationsAircraft mixSingle-engine pistonAircraft mix5,6Twin-engine piston13,1Small jet (e.g., Citation)5,6Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operation65,0Itioerant61,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37 270     | 320             |
| Transient aircraft         Peak parking demand         Annual aircraft operations         Aircraft mix         Single-engine piston       86,0         Twin-engine piston       15,6         Twin-engine turboprop       13,1         Small jet (e.g., Citation)       5,6         Medium jet (e.g., Falcon 900)       1,2         Large jet (e.g., Gulfstream)       1,8         Helicopters       2,5         Total       126,0         Type of operation       61,0         Local (touch-and-go)       65,0                                                                                                                                                                                                                                                                                                                     | 24 290     | 340             |
| Peak parking demandAnnual aircraft operationsAircraft mixSingle-engine piston86,0Twin-engine piston15,6Twin-engine turboprop13,1Small jet (e.g., Citation)5,6Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operationLocal (touch-and-go)Liperant61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 |
| Annual aircraft operationsAircraft mixSingle-engine piston86,0Twin-engine piston15,6Twin-engine turboprop13,1Small jet (e.g., Citation)5,6Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operationLocal (touch-and-go)Liperant61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27 44      | 44              |
| Aircraft mixSingle-engine piston86,0Twin-engine piston15,6Twin-engine turboprop13,1Small jet (e.g., Citation)5,6Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operation65,0Local (touch-and-go)65,0Itiperant61,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                 |
| Single-engine piston86,0Twin-engine piston15,6Twin-engine turboprop13,1Small jet (e.g., Citation)5,6Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operationLocal (touch-and-go)Linerant61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                 |
| Twin-engine piston15,6Twin-engine turboprop13,1Small jet (e.g., Citation)5,6Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operationLocal (touch-and-go)Local (touch-and-go)65,0Itinerant61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40 137,500 | 175,000         |
| Twin-engine turboprop13,1Small jet (e.g., Citation)5,6Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operationLocal (touch-and-go)Local (touch-and-go)65,0Itiperant61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40 21,000  | 33,500          |
| Small jet (e.g., Citation)5,6Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operationLocal (touch-and-go)Local (touch-and-go)65,0Itiperant61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40 27,000  | 27,000          |
| Medium jet (e.g., Falcon 900)1,2Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operation120,0Local (touch-and-go)65,0Itiperant61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30 12,500  | 12,500          |
| Large jet (e.g., Gulfstream)1,8Helicopters2,5Total126,0Type of operation126,0Local (touch-and-go)65,0Itiperant61,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50 4,500   | 4,500           |
| Helicopters2,5Total126,0Type of operation126,0Local (touch-and-go)65,0Itiperant61,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80 3,500   | 3,500           |
| Total126,0Type of operation126,0Local (touch-and-go)65,0Itiperant61,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00 4,000   | 4,000           |
| Type of operation<br>Local (touch-and-go) 65,0<br>Itinerant 61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80 210,000 | 260,000         |
| Local (touch-and-go) 65,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                 |
| ltinerant 61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80 110,000 | 160,000         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00 100,000 | 100,000         |
| Total 126,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80 210,000 | 260,000         |
| Average operations per based aircraft 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63 724     | 765             |



Napa County Airport Aircraft operations in the vicinity of airports can be a significant source of noise.

#### NAPA COUNTY BASELINE DATA REPORT

#### Table 6-9. Napa County Airport Master Plan Activity Forecast

#### Table 6-10. Typical Sound Levels Generated by Small Aircraft

| Slant Distance<br>(feet)                    | Single<br>Engine Takeoff | Single<br>Engine Landing | Twin<br>Engine Takeoff | Twin<br>Engine Landing |  |  |  |  |  |
|---------------------------------------------|--------------------------|--------------------------|------------------------|------------------------|--|--|--|--|--|
| 500                                         | 74                       | 66                       | 80                     | 72                     |  |  |  |  |  |
| 1,000                                       | 71                       | 63                       | 77                     | 69                     |  |  |  |  |  |
| 2,000                                       | 67                       | 59                       | 73                     | 65                     |  |  |  |  |  |
| 4,000                                       | 63                       | 55                       | 69                     | 61                     |  |  |  |  |  |
| 8,000                                       | 58                       | 50                       | 64                     | 56                     |  |  |  |  |  |
| Sources: Bishop and Hays 1975: Miller 1982. |                          |                          |                        |                        |  |  |  |  |  |

# TRAINS

No active freight rail lines are in operation within the County. The only rail line in operation in Napa County is the Napa Valley Wine Train, which operates on the old Southern Pacific Railroad line. The 36-mile rail line runs from the City of Napa to the City of St. Helena daily for lunch and dinner trips, and between the City of Napa and the City of Rutherford for weekend lunch trips. The daily lunch and dinner trips are 3-hour trips, while the weekend brunch trips are 2-hour trips. Table 6-11 summarizes the schedule for the Napa Valley Wine Train.

#### Table 6-11. Napa Valley Wine Train Schedule

|                                      | Brunch     | Luncheon   |            | Dinner    |
|--------------------------------------|------------|------------|------------|-----------|
| All Trips Originate in City of Napa  | Weekend    | Weekday    | Weekend    | Daily     |
| Depart for Rutherford                | 9:30 a.m.  | -          |            | -         |
| Depart for St. Helena                |            | 11:30 a.m. | 12:30 p.m. | 6:30 p.m. |
| Return to Napa                       | 11:30 a.m. | 2:30 p.m.  | 3:30 p.m.  | 9:30 p.m. |
| Duration                             | 2 hours    | 3 hours    | 3 hours    | 3 hours   |
| Source: Napa Valley Wine Train 2005. |            |            |            |           |

The 1992 EIR prepared for the Napa Valley Wine Train (Environmental Science Associates 1993) indicates that noise from the train would approach 85 to 90 dBA as the diesel locomotive approaches a receiver, and then drop to 80 to 85 dBA as the passenger coaches pass by. The total passby event typically would occur for approximately 1.5 minutes. Modeling conducted for the Napa Valley Wine Train EIR indicates that noise levels would increase to approximately 59 dBA, L<sub>dn</sub> in the residential areas of the City of Napa. Noise exposure from the Napa Valley Wine Train is primarily limited to the first row of houses along the railroad right-of-way because these houses shield the houses further away from the tracks from train noise.

In addition to passby noise from train operations, the train would also generate noise during idling and when it uses its public warning/safety devices (i.e., train horn) at roadway crossings. Data from the 1992 EIR prepared for the Napa Valley Wine Train indicates that an idling Napa Valley Wine Train

locomotive generates a noise level of approximately 78 dBA at 50 feet, while a locomotive horn is approximately 100 dBA at 100 feet. It is anticipated that a train approaching a roadway crossing would sound its horn four to six times within approximately 500 feet of each crossing.

# **CONSTRUCTION SITES**

Table 6-12 illustrates noise levels produced by various types of construction equipment. The types of construction equipment used for a typical construction project usually generate noise levels of 80–90 dBA at a distance of 50 feet while the equipment is operating (U.S. Environmental Protection Agency 1971). Specific noise levels depend on the type of activity, the type and number of pieces of equipment in use; the noise level generated by the various pieces of equipment; the duration of the activity; the distance between the activity and any noise-sensitive receivers; and possible shielding effects that might result from local topography, vegetation, or buildings.

#### Table 6-12. Construction Equipment Noise Emission Levels

|                                   | Typical Noise Level (dBA)              |                               | Typical Noise Level (dBA)        |
|-----------------------------------|----------------------------------------|-------------------------------|----------------------------------|
| Equipment                         | 50 ft from Source                      | Equipment                     | 50 ft from Source                |
| Air Compressor                    | 81                                     | Paver                         | 89                               |
| Backhoe                           | 80                                     | Pile Driver (Impact)          | 101                              |
| Ballast equalizer                 | 82                                     | Pile Driver (Sonic)           | 96                               |
| Ballast tamper                    | 83                                     | Pneumatic Tool                | 85                               |
| Bulldozer                         | 85                                     | Pump                          | 76                               |
| Chainsaw                          | 86                                     | Rail saw                      | 90                               |
| Compactor                         | 82                                     | Rock Drill                    | 98                               |
| Concrete Mixer                    | 85                                     | Roller/Sheep's Foot           | 74                               |
| Concrete Pump                     | 82                                     | Saw                           | 76                               |
| Concrete Vibrator                 | 76                                     | Scarifier                     | 83                               |
| Crane, Derrick                    | 88                                     | Scraper                       | 89                               |
| Crane, Mobile                     | 83                                     | Shovel                        | 82                               |
| Excavator/Shovel                  | 82                                     | Spike driver                  | 77                               |
| Generator                         | 81                                     | Tie cutter                    | 84                               |
| Grader                            | 85                                     | Tie handler                   | 80                               |
| Impact wrench                     | 85                                     | Tie inserter                  | 85                               |
| Jack Hammer                       | 88                                     | Truck                         | 88                               |
| Loader                            | 85                                     | Wood Chipper                  | 89                               |
| Sources: Cowan 19<br>Service 1980 | 94, Federal Transit Administration 199 | 5, Nelson 1987, United States | Department of Agriculture Forest |

Construction equipment operations can vary from intermittent to fairly continuous, and multiple pieces of equipment often operate concurrently. As an example, assuming that a bulldozer (85 dBA), backhoe (80 dBA), grader (85 dBA), and loader (85 dBA) are operating concurrently in the same area, peak construction-period noise could be as high as approximately 90 dBA at 50 feet from a construction site.

Using a source level of 90 dBA at 50 feet and assuming normal geometric and ground attenuation, the distance to the 75-, 70-, 65-, 60-, 55-, and 50-dBA contours are indicated in Table 6-13.





| i       | 90 dBA | 50 feet    |
|---------|--------|------------|
|         | 75 dBA | 180 feet   |
|         | 70 dBA | 300 feet   |
| - Ander | 65 dBA | 450 feet   |
|         | 60 dBA | 700 feet   |
|         | 55 dBA | 1,100 feet |
| 1       | 50 dBA | 1,700 feet |

Table 6-13 indicates that residences and other noise-sensitive land uses within approximately 180 feet of construction activity could be exposed to noise in excess of the County's nighttime noise limit of 75 dBA, while residences and other noise-sensitive land uses within approximately 700 feet of construction activity could be exposed to noise in excess of the County's nighttime noise limit of 60 dBA.

# AGRICULTURAL ACTIVITY

The primary sources of noise related to farming activity in Napa County are tractors, harvesters, and crop-dusting aircraft. Typical noise levels from tractors, as measured at a distance of 50 feet, range from approximately 75 dBA to 95 dBA, with an average of approximately 84 dBA (Toth 1979). These noise levels should be reasonably representative of noise levels from other wheeled and tracked farm equipment.

Using a source level of 84 dBA at 50 feet and assuming normal geometric and ground attenuation, the distance to the 75-, 70-, 65-, 60-, 55-, and 50-dBA contours are indicated in Table 6-14.

Table 6-14. Estimated Distance to dBA Contours from Farming Activities

| Calculated noise level | Distance from construction source |
|------------------------|-----------------------------------|
| 84 dBA                 | 50 feet                           |
| 75 dBA                 | 115 feet                          |
| 70 dBA                 | 175 feet                          |
| 65 dBA                 | 275 feet                          |
| 60 dBA                 | 400 feet                          |
| 55 dBA                 | 650 feet                          |
| 50 dBA                 | 1,000 feet                        |
|                        |                                   |

Table 6-14 indicates that residences and other noise-sensitive land uses within approximately 115 feet of active farming operations could be exposed to noise in excess of the County's nighttime noise limit of 75 dBA, while residences and other noise-sensitive land uses within approximately 400 feet of active farming operations could be exposed to noise in excess of the County's nighttime noise limit of 60 dBA.

|           | The second second |     |
|-----------|-------------------|-----|
| Calific I |                   | E V |
| 153 2     |                   |     |
|           |                   |     |
|           |                   |     |
| RPZ 0     | in the            |     |
|           | The               |     |
| 13        |                   |     |

Noise from winery operations is generally intermittent and occurs during limited periods.

- longer active).
- active).

Noise associated with these facilities is intermittent and variable depending on what activities are occurring and comes from sources such as forklift and equipment activity in equipment yards, delivery trucks, and other facility operations. The facilities are located in areas distant from noise-sensitive land uses and noise from facility operations is typically not audible in areas where noise-sensitive land uses are located.

Noise from winery operations is primarily intermittent and occurs during limited periods. The sound levels can vary greatly depending on the location of the noise source, type of activity, and distance to the nearest receptor. The primary noise-generating activities and equipment associated with wineries include refrigeration equipment, bottling equipment, barrel washing, destemmer and press activities occurring during the harvest crush season, and delivery trucks and other vehicles. Sound level measurements for winery activities were conducted for the proposed Tom Eddy Winery in 2001 as part of a permit review and application process (Sound Solutions 2001). Table 6-15 summarizes sound level measurements taken at the winery to represent representative sound levels for winery activities.

#### Table 6-13. Estimated Distance to dBA Contours from Construction Activities





Primary sources of noise related to agricultural activity are tractors, harvesters, pesticide/herbicide application equipment, crushers, and frost protection equipment.

We Warsh

# OTHER MISCELLANEOUS FACILITIES AND PLANTS

Several commercial, industrial, and agricultural facilities located throughout the County are sources of noise. Wineries are the predominant commercial/industrial land uses within the County. Wineries within the County are identified in Appendix Noise-F. The locations of winery facilities are shown in Maps 6-1 through 6-3. Maps 6-10 through 6-12 indicate areas within the County zoned for light industrial, warehouse, offices industrial area, industrial, and heavy industrial uses. The following guarries are also located within the County. Only one of the guarries-Napa Quarry-is currently a significant mining operation (California Office of Mine Reclamation 2005).

Napa Quarry—Syar Industries, Inc., Napa 2301 Napa/Vallejo Highway, Napa.

Homestake Mining Company—26775 Morgan Valley Road, Lower Lake, 95457 (in reclamation, no

American Canyon Quarry—Syar Industries, Inc., 2301 Napa/Vallejo Highway, Napa (idle, not

Pope Creek Quarry—Don Wesner, Inc., 7193 Pope Valley Road, Pope Valley.

Oat Hill Quarry—Napa Vallejo Waste Management Authority, City of American Canyon.

#### Table 6-15. Representative Sound Levels for Winery Activities

|         |                               | Sound Sources and Measurement                                  |                 | Sound Level Descriptors (dBA) |                 |                   |                   |                |  |  |
|---------|-------------------------------|----------------------------------------------------------------|-----------------|-------------------------------|-----------------|-------------------|-------------------|----------------|--|--|
| Date    | Time                          | Locations                                                      | L <sub>eq</sub> | L <sub>50</sub>               | L <sub>25</sub> | L <sub>8.33</sub> | L <sub>1.67</sub> | L <sub>0</sub> |  |  |
| 8/29/01 | 10:00 a.m.                    | Ambient                                                        | 50.7            | 36.7                          | 49.3            | 55.9              | 61.0              | 64.5           |  |  |
| 9/27/01 | 2:39 p.m.                     | Ambient                                                        | 40.7            | 37.4                          | 40.0            | 44.6              | 48.7              | 56.3           |  |  |
| _       | -                             | Three flat-bed diesel trucks over 1-<br>hour, 105 feet to path | -               | -                             | -               | -                 | 65.0              | 76.0           |  |  |
| 9/14/01 | 10:00 a.m.                    | Press activities at 60 feet to center of activity area         | 60.2            | 57.7                          | 60.3            | 64.4              | 68.9              | 80.6           |  |  |
| 9/14/01 | 10:00 a.m.                    | De-stemmer at 70 feet                                          | 66.7            | 65.8                          | 66.4            | 67.4              | 76.0              | 76.0           |  |  |
| 9/14/01 | 10:00 a.m.                    | Plastic bin washing at 60 feet                                 | 54.4            | 52.1                          | 54.6            | 57.6              | 62.2              | 64.7           |  |  |
| 9/14/01 | 10:00 a.m.                    | Condenser/chiller at 11 feet to one side                       | 70.0            | 70.0                          | 70.0            | 71.0              | 72.0              | 72.0           |  |  |
| -       | -                             | Inside refrigeration equipment room                            | 85.0            | 85.0                          | 85.0            | 86.0              | 87.0              | 87.0           |  |  |
| 9/7/01  | 1:00 p.m.                     | Mobile bottling line, left side of truck, 30 feet to center    | 82.3            | 81.5                          | 73.1            | 75.1              | 76.6              | 77.6           |  |  |
| 9/7/01  | 1:00 p.m.                     | Mobile bottling line, right side of truck, 30 feet to center   | 73.1            | 73.1                          | 73.6            | 74.6              | 75.6              | 76.1           |  |  |
| Sourc   | Source: Sound Solutions 2001. |                                                                |                 |                               |                 |                   |                   |                |  |  |

# **EXISTING NOISE EXPOSURES**

A community noise survey focusing on various areas within the County was conducted to quantify and document existing noise exposures at selected noise-sensitive locations throughout the County. Monitoring sites were selected to represent typical conditions in the County. Short- and long-term monitoring was conducted. Map 6-4 depicts the locations within the County where noise monitoring was conducted.

# SHORT-TERM NOISE MONITORING

Short-term noise monitoring (approximately 20 minutes in duration) was conducted at 20 locations throughout the County between Wednesday, December 1, 2004, and Friday, December 3, 2004, and again on Friday, December 10, 2004. For the short-term monitoring, a Larson-Davis Model 812 Precision Type 1 sound-level meter (serial numbers 0430 and 0239) was placed at each location 5 feet above the ground on a tripod. The calibration of the meter was checked before and after the measurement using a Larson-Davis Model CA250 calibrator (serial number 0125). The locations of the short-term measurement positions are shown in Map 6-4.

Temperature, wind speed, and humidity were recorded manually during the short-term monitoring session using a Kestrel 3000 portable weather station. During the short-term measurement session, skies were essentially sunny. Cloud cover conditions were class 3, which refers to the sun essentially being unobscured 80% of the time, and class 4, which refers to a clear night with less than 50% cloud cover. Wind speeds were typically in the range of 0 to 7 mph. Temperatures were in the range of 44 to 67°F, with relative humidity typically in the range of 21 to 100%.

Monitoring positions are described in Table 6-16 and shown in Map 6-4. Sound level data ( $L_{eq}$ ,  $L_{max}$ ,  $L_{min}$ ,  $L_{peak}$ ,  $L_{10}$ ,  $L_{33}$ ,  $L_{50}$ , and  $L_{90}$  values) collected during the short-term monitoring sessions are reported in Table 6-16.

## LONG-TERM NOISE MONITORING

Long-term noise monitoring (between 1 and 6 days in duration) was conducted at five locations in the County using a Larson-Davis Model 700 Type 2 sound-level meter (serial numbers 0190, 1132, and 1406). The monitoring locations were chosen to characterize noise exposure at various areas within the County. At the long-term sites, the meters were housed in watertight steel cases with a microphone extension from the case. The sound meter microphones were supported approximately 3 feet above ground level. The purpose of these measurements was to quantify variations in sound level throughout the day rather than absolute sound levels at a specific receptor of concern. The long-term sound-level data were collected over a period ranging from 1 to 6 days over the periods beginning on December 1, 2004 and December 10, 2004. Weather conditions were generally cool and calm. Once the data were collected, the sound meters were connected to a computer with an RS-232 interface, and the data were downloaded.

The average hourly  $L_{eq}$  values, 24-hour  $L_{dn}$ , and 24-hour CNEL values over the long-term monitoring period are summarized in Tables 6-17 through 6-21. Figures 6-1 through 6-5 graphically summarize the results of the long-term monitoring sessions. The differences between the sound levels measured during each hour and the maximum noise hour sound levels are also shown. These values are provided for general reference and can be used to estimate worst noise hour noise levels from measurements not taken during the worst noise hour.

# EXISTING NOISE CONFLICTS IN NAPA COUNTY

In general, there are very few existing noise conflicts within the County. A key indicator of noise conflicts is the number of complaints registered with the County. Data provided by the County sheriff's department indicate that there were eight noise complaints received for the years 2003 and 2004 (Crawford pers. comm.). On the city level, St. Helena received 10 complaints for the same time period (Swanson pers. comm.), Yountville received none, American Canyon received one, and the City of Napa received 584 (Claudino pers. comm.). The following discussion summarizes conflicts related to specific noise sources within the County.

# **ROADWAY TRAFFIC**

Several residential areas in the County are currently exposed to traffic noise levels in excess of 60 dBA,  $L_{dn}$ . These areas are indicated in Maps 6-4 through 6-6. Calculated  $L_{dn}$  values at 100 feet from the roadway centerline along with distances to the 70-, 65-, and 60-dB  $L_{dn}$  contours are also presented in Table 6-8, while the distances to the 70-, 65-, and 60-dB  $L_{dn}$  contours are also presented in Maps 6-4 through 6-6.





# Table 6-16. Summary of Short-Term Noise Monitoring

| Monitoring          |                                                                                         |          |            | Duration  |                                     |                  |                  |                   |                 |                 |                 |                 |
|---------------------|-----------------------------------------------------------------------------------------|----------|------------|-----------|-------------------------------------|------------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|
| position            | Location                                                                                | Date     | Start time | (minutes) | L <sub>eq</sub>                     | L <sub>max</sub> | L <sub>min</sub> | L <sub>peak</sub> | L <sub>10</sub> | L <sub>33</sub> | L <sub>50</sub> | L <sub>90</sub> |
| 1                   | Silverado Trail at Sage Canyon Road, across from Rutherford Ranch                       | 12/2/04  | 11:30 a.m. | 20:00     | 71.9                                | 84.0             | 42.5             | 106.5             | 76.4            | 71.4            | 67.9            | 55.7            |
| 3                   | Silverado County Club (corner of Hillside Drive & Westgate Drive)                       | 12/2/04  | 11:55 a.m. | 20:00     | 51.4                                | 65.8             | 34.0             | 94.0              | 56.3            | 47.9            | 44.0            | 37.0            |
| 4                   | Circle Oaks Subdivision (Country Club Lane & Zinnia Lane)                               | 12/2/04  | 1:07 p.m.  | 20:00     | 49.6 <sup>1</sup> 44.9 <sup>2</sup> | 73.4             | 39.2             | 90.1              | 48.2            | 45.4            | 44.4            | 41.4            |
| 6                   | Highway 29, west of Rutherford Fire Department                                          | 12/3/04  | 11:10 a.m. | 20:00     | 66.5                                | 75.7             | 51.5             | 101.9             | 69.3            | 67.1            | 65.5            | 59.1            |
| 8                   | Highway 29 at The Outlets                                                               | 12/2/04  | 4:58 p.m.  | 20:00     | 71.3                                | 82.1             | 49.5             | 100.2             | 74.8            | 71.6            | 69.8            | 58.1            |
| 9                   | Moskowite Corners (Highway 128 & Steele Canyon Road), across from Corners General Store | 12/2/04  | 1:20 p.m.  | 20:00     | 52.9                                | 73.2             | 37.3             | 94.1              | 56.7            | 51.4            | 48.4            | 41.3            |
| 10                  | Berryessa Knoxville Road. (Eastside Rd.) at Welcome to Lake<br>Berryessa sign           | 12/3/04  | 4:38 p.m.  | 20:00     | 37.8 <sup>1</sup> 32.9 <sup>2</sup> | 60.9             | 29.2             | 92.8              | 35.8            | 31.1            | 30.4            | 29.5            |
| 12                  | North end of Soda Canyon Road, at mailboxes                                             | 12/3/04  | 12:53 p.m. | 20:00     | 49.5 <sup>1</sup> 36.5 <sup>2</sup> | 69.9             | 29.7             | 94.8              | 44.6            | 36.5            | 33.9            | 30.6            |
| 14                  | Steele Park Resort (Boat Launch Ramp)                                                   | 12/10/04 | 3:08 p.m.  | 20:00     | 45.9                                | 62.1             | 32.5             | 87.3              | 47.7            | 40.7            | 38.8            | 36.0            |
| 15                  | St. Helena Hospital parking lot between Jennie's and Deer Park Elmshaven Church         | 12/2/04  | 3:41 p.m.  | 20:00     | 46.1                                | 62.9             | 40.1             | 91.0              | 48.5            | 45.0            | 44.0            | 41.6            |
| 17                  | Skyline Park below disc golf course on Manzanita Trail                                  | 12/1/04  | 1:35 p.m.  | 20:00     | 40.2                                | 56.5             | 29.6             | 91.9              | 39.1            | 34.2            | 32.7            | 30.1            |
| 18                  | Basalt Road at Syar Napa Quarry entrance sign                                           | 12/1/04  | 12:31 p.m. | 20:00     | 64.4                                | 80.5             | 44.6             | 97.5              | 68.2            | 56.7            | 51.7            | 47.5            |
| 19                  | Corner of Bennett Lane and Evvey Road.                                                  | 12/2/04  | 3:46 p.m.  | 20:00     | 44.4 <sup>1</sup> 40.0 <sup>2</sup> | 60.0             | 32.2             | 81.7              | 47.1            | 39.1            | 37.2            | 34.1            |
| 20                  | Cardinale Winery at back warehouse                                                      | 12/10/04 | 9:31 a.m.  | 26:54     | 60.5                                | 83.2             | 43.7             | 105.5             | 60.1            | 52.8            | 50.2            | 46.1            |
| 21                  | Wooden Valley Road at Wooden Valley Elementary School<br>parking lot                    | 12/2/04  | 11:26 a.m. | 20:00     | 51.5                                | 67.1             | 32.1             | 97.8              | 55.0            | 46.6            | 43.6            | 35.4            |
| 22                  | 2049 Monticello Road (Highway 121)                                                      | 12/1/04  | 3:28 p.m.  | 20:00     | 72.0                                | 85.5             | 41.8             | 100.5             | 77.0            | 70.8            | 64.8            | 50.5            |
| 23                  | Silverado Trail at Hardman Avenue                                                       | 12/1/04  | 4:25 p.m.  | 20:00     | 65.5                                | 78.8             | 44.4             | 94.2              | 68.8            | 65.0            | 62.9            | 53.4            |
| 24                  | Prichard Hill Area on top of Long Ranch Road                                            | 12/10/04 | 1:57 p.m.  | 20:00     | 46.3 <sup>1</sup> 35.8 <sup>2</sup> | 65.3             | 31.0             | 91.2              | 44.6            | 37.3            | 34.7            | 32.1            |
| 25                  | West end of Langtry Road                                                                | 12/2/04  | 5:18 p.m.  | 20:00     | 45.4 <sup>1</sup> 40.2 <sup>2</sup> | 64.7             | 32.4             | 97.0              | 43.6            | 39.6            | 38.3            | 34.6            |
| 26                  | North end of Big Ranch Road                                                             | 12/3/04  | 1:47 p.m.  | 20:00     | 45.7                                | 64.5             | 32.8             | 88.4              | 46.0            | 38.1            | 36.5            | 34.0            |
| Notes:              |                                                                                         |          |            |           |                                     |                  |                  |                   |                 |                 |                 |                 |
| <sup>1</sup> Denote | s measured Leq from entire noise monitoring episode                                     |          |            |           |                                     |                  |                  |                   |                 |                 |                 |                 |

<sup>2</sup> Denotes calculated L<sub>eq</sub> with single event noise sources (i.e., automobile driveby) removed

# NAPA COUNTY BASELINE DATA REPORT

|                         | 1-Hour dB-L <sub>eq</sub> |                   |                   |                    |                      |                     | Maximum Noise Hour |                                                    |
|-------------------------|---------------------------|-------------------|-------------------|--------------------|----------------------|---------------------|--------------------|----------------------------------------------------|
| Time                    | Saturday (12/11/04)       | Sunday (12/12/04) | Monday (12/13/04) | Tuesday (12/14/04) | Wednesday (12/15/04) | Thursday (12/16/04) | Average            | dB-L <sub>eq</sub> minus Hourly dB-L <sub>eq</sub> |
| 12:00 a.m.              | 38.5                      | 37.5              | 37.5              | 39.0               | 37.0                 | 37.0                | 38                 | 12                                                 |
| 1:00 a.m.               | 39.5                      | 36.5              | 39.0              | 38.5               | 37.0                 | 37.0                | 38                 | 12                                                 |
| 2:00 a.m.               | 39.0                      | 36.0              | 38.5              | 37.0               | 36.5                 | 37.0                | 37                 | 13                                                 |
| 3:00 a.m.               | 38.5                      | 36.5              | 41.5              | 37.5               | 36.5                 | 37.5                | 38                 | 12                                                 |
| 4:00 a.m.               | 37.0                      | 37.0              | 47.5              | 37.5               | 37.0                 | 39.5                | 39                 | 11                                                 |
| 5:00 a.m.               | 39.0                      | 37.0              | 42.0              | 47.5               | 41.5                 | 46.5                | 42                 | 8                                                  |
| 6:00 a.m.               | 47.0                      | 41.5              | 49.5              | 49.5               | 49.5                 | 50.5                | 48                 | 2                                                  |
| 7:00 a.m.               | 45.0                      | 42.0              | 47.0              | 46.0               | 46.5                 | 52.5                | 47                 | 4                                                  |
| 8:00 a.m.               | 46.0                      | 43.5              | 47.5              | 48.5               | 48.5                 | 48.5                | 47                 | 3                                                  |
| 9:00 a.m.               | 48.5                      | 42.5              | 47.5              | 51.5               | 50.5                 | 48.0                | 48                 | 2                                                  |
| 10:00 a.m.              | 46.5                      | 45.0              | 47.0              | 48.0               | 47.5                 | 46.5                | 47                 | 3                                                  |
| 11:00 a.m.              | 46.5                      | 45.0              | 49.0              | 51.5               | 49.5                 | 50.0                | 49                 | 1                                                  |
| 12:00 p.m.              | 44.0                      | 44.0              | 48.5              | 48.5               | 46.5                 | 50.0                | 47                 | 3                                                  |
| 1:00 p.m.               | 46.5                      | 46.5              | 50.5              | 50.5               | 46.5                 | 49.5                | 48                 | 2                                                  |
| 2:00 p.m.               | 47.0                      | 53.0              | 49.0              | 53.0               | 51.0                 | 48.5                | 50                 | 0                                                  |
| 3:00 p.m.               | 44.0                      | 43.5              | 50.5              | 50.5               | 51.0                 | 49.5                | 48                 | 2                                                  |
| 4:00 p.m.               | 43.5                      | 43.0              | 49.5              | 49.5               | 50.0                 | 51.0                | 48                 | 2                                                  |
| 5:00 p.m.               | 49.5                      | 40.5              | 46.5              | 49.0               | 46.5                 | 46.5                | 46                 | 4                                                  |
| 6:00 p.m.               | 42.0                      | 42.0              | 44.0              | 46.5               | 45.0                 | 44.0                | 44                 | 6                                                  |
| 7:00 p.m.               | 40.5                      | 42.0              | 39.5              | 38.5               | 46.0                 | 42.0                | 41                 | 9                                                  |
| 8:00 p.m.               | 39.0                      | 40.5              | 45.0              | 39.5               | 41.0                 | 42.5                | 41                 | 9                                                  |
| 9:00 p.m.               | 39.0                      | 41.0              | 37.5              | 43.0               | 40.0                 | 39.0                | 40                 | 10                                                 |
| 10:00 p.m.              | 38.5                      | 38.0              | 38.0              | 39.0               | 37.5                 | 42.0                | 39                 | 11                                                 |
| 11:00 p.m.              | 39.0                      | 36.5              | 39.0              | 38.5               | 38.0                 | 36.5                | 38                 | 12                                                 |
| 24-hour L <sub>eq</sub> | 44.3                      | 43.6              | 46.5              | 47.6               | 46.6                 | 47.2                | 46                 | NA                                                 |
| 24-hour L <sub>dn</sub> | 48.3                      | 46.3              | 50.9              | 51.1               | 49.9                 | 51.1                | 50                 | NA                                                 |
| 24-hour CNEL            | 48.5                      | 46.7              | 51.1              | 51.2               | 50.1                 | 51.2                | 50                 | NA                                                 |

 Table 6-17.
 Summary of Long-Term Noise Monitoring at Position 2 (Larson-Davis 1132 Sound Meter)

# NAPA COUNTY BASELINE DATA REPORT

# AIRCRAFT

In accordance with State Division of Aeronautics Noise Standards, 65 dBA CNEL is considered an acceptable aircraft noise level for residential land uses near a general aviation airport. As shown in Maps 6-7 through 6-9, there are some noise-sensitive land uses currently in the County that are exposed to excessive aircraft noise in excess of 65 dBA CNEL near the Napa County Airport and Angwin-Virgil O Parrett Field.

# TRAINS

Several residential areas in the County are exposed to train noise levels in excess of 65 dBA Ldn. These areas are located directly adjacent to the rail line. The Valley Estates Mobile home park is exposed to the highest levels of train noise.

# **CONSTRUCTION SITES**

No construction sites are identified where noise is a problem for existing sensitive land uses.

# AGRICULTURAL ACTIVITY

Because a majority of Napa County's unincorporated land is rural and the common use of the land is agriculturally based, noise conflicts can occur when two incompatible uses are adjacent. The most common noise conflicts are those between agricultural operations and residential housing developments (neighbor vs. neighbor).

The predominate agricultural activity in Napa County is the growing of wine grapes, the processing (fermenting) of those grapes to make wine, and the marketing of wine through public visitation or events. Noise related to Napa County's wine industry includes the harvesting, transporting, processing (crushing, fermenting, and aging) of wine grapes to make wine, and the sale or marketing of wine. Noise levels from those activities can be inconsistent with localized noise character if vineyard or winery facilitates are located near or adjacent to rural residential home sites or neighborhood enclaves.

Common sources of noise from vineyard operations include frost protection equipment (wind machines, overhead spray irrigation, and related pumps) operated during the evening and early morning hours; tractor use (tillage, mowing, materials transport); pesticide/fertilizer equipment and application; and annual harvest activity of limited duration; routine vineyard management (pruning, trellis and irrigation repair/management, road and avenue maintenance). Common noise sources from wineries and winery processing include de-stemming and crushing equipment, conveyors, hoists and fork lifts, highpressure cleaning equipment, truck and trailer traffic from delivery operations, automobile and tour bus traffic related to public tours and visitation, and wine marketing events of various size and duration.

No major industrial or heavy commercial facilities are located adjacent to populated areas, and noise from activities in these areas is generally limited to the facility property. Therefore, no conflicts exist between these facilities and noise-sensitive land uses.

# **CONCLUSIONS AND REPORT UPDATE RECOMMENDATIONS**

As indicated by the relatively low number of noise complaints registered annually with the County, there are very few currently existing noise conflicts within Napa County. The principal noise sources within the County are roadway traffic, aircraft, trains, construction activity, and agricultural activity.

Because the volume and distribution of traffic on the County's roadway network will change as development occurs and transportation infrastructure is created or modified, traffic noise will also change. However, because traffic noise is not highly sensitive to changes in traffic volume (e.g., a doubling of traffic volume results in a barely perceptible change in noise), frequent (i.e., annual) updating of traffic noise contours in the County will not likely be required. Accordingly, traffic noise contours should be updated every 5 years using current traffic data available at that time. Changes in train and airport operations, as well as the frequency and distribution of agricultural activity, should also be evaluated at that time to determine whether those changes effect related noise.

The most common noise conflict in Napa County is between agricultural activities and their residential neighbors.

# OTHER MISCELLANEOUS FACILITIES AND PLANTS



**Table 6-18.** Summary of Long-Term Noise Monitoring at Position 5 (Larson-Davis 1406

 Sound Meter)

**Table 6-19.** Summary of Long-Term Noise Monitoring at Position 7 (Larson-Davis 1132

 Sound Meter)

|                         |            | 1-Hour     | _          |         |                                 |
|-------------------------|------------|------------|------------|---------|---------------------------------|
|                         | Saturday   | Sunday     | Monday     |         | Maximum Noise Hour dB-Leq       |
| lime                    | (12/11/04) | (12/12/04) | (12/13/04) | Average | minus Hourly dB-L <sub>eq</sub> |
| 12:00 a.m.              | 48.0       | 45.5       | 43.0       | 46      | 11                              |
| 1:00 a.m.               | 46.0       | 44.0       | 49.5       | 47      | 10                              |
| 2:00 a.m.               | 43.5       | 41.5       | 39.0       | 41      | 15                              |
| 3:00 a.m.               | 44.5       | 40.0       | 42.0       | 42      | 14                              |
| 4:00 a.m.               | 42.5       | 41.5       | 42.0       | 42      | 14                              |
| 5:00 a.m.               | 43.0       | 49.0       | 48.5       | 47      | 9                               |
| 6:00 a.m.               | 44.5       | 53.0       | 52.5       | 50      | 6                               |
| 7:00 a.m.               | 49.5       | 56.0       | 55.0       | 54      | 3                               |
| 8:00 a.m.               | 51.0       | 56.0       | 56.0       | 54      | 2                               |
| 9:00 a.m.               | 55.0       | 55.0       | 56.5       | 56      | 1                               |
| 10:00 a.m.              | 53.0       | 57.0       | 53.5       | 55      | 2                               |
| 11:00 a.m.              | 54.0       | 57.5       | 54.5       | 55      | 1                               |
| 12:00 p.m.              | 54.0       | 58.0       | 55.0       | 56      | 0                               |
| 1:00 p.m.               | 55.0       | 56.5       | 56.0       | 56      | 0                               |
| 2:00 p.m.               | 54.0       | 55.5       | 56.0       | 55      | 1                               |
| 3:00 p.m.               | 54.5       | 57.5       | 54.5       | 56      | 1                               |
| 4:00 p.m.               | 53.5       | 57.0       | 55.5       | 55      | 1                               |
| 5:00 p.m.               | 54.5       | 55.0       | 56.0       | 55      | 1                               |
| 6:00 p.m.               | 51.5       | 54.0       | 54.0       | 53      | 3                               |
| 7:00 p.m.               | 51.0       | 52.5       | 52.0       | 52      | 4                               |
| 8:00 p.m.               | 49.0       | 49.5       | 52.0       | 50      | 6                               |
| 9:00 p.m.               | 49.0       | 52.5       | 56.0       | 53      | 4                               |
| 10:00 p.m.              | 54.5       | 49.5       | 54.0       | 53      | 3                               |
| 11:00 p.m.              | 47.5       | 48.0       | 47.5       | 48      | 8                               |
| 24-hour L <sub>eq</sub> | 51.7       | 54.1       | 53.6       | 53      | NA                              |
| 24-hour L <sub>dn</sub> | 55.5       | 56.6       | 56.9       | 56      | NA                              |
| 24-hour CNEL            | 55.8       | 57.0       | 57.5       | 57      | NA                              |

|                         |                       | 1                   | _                     |                     |         |                                                                          |
|-------------------------|-----------------------|---------------------|-----------------------|---------------------|---------|--------------------------------------------------------------------------|
| Time                    | Thursday<br>(12/2/04) | Friday<br>(12/3/04) | Saturday<br>(12/4/04) | Sunday<br>(12/5/04) | Average | Maximum Noise Hour dB-L <sub>eq</sub><br>minus Hourly dB-L <sub>eq</sub> |
| 12:00 a.m.              | 48.5                  | 50.5                | 51.5                  | 48.5                | 50      | 8                                                                        |
| 1:00 a.m.               | 49.0                  | 45.5                | 51.0                  | 48.5                | 49      | 10                                                                       |
| 2:00 a.m.               | 53.0                  | 49.0                | 46.0                  | 49.0                | 49      | 9                                                                        |
| 3:00 a.m.               | 50.0                  | 52.0                | 48.0                  | 49.5                | 50      | 8                                                                        |
| 4:00 a.m.               | 54.0                  | 51.5                | 50.5                  | 45.5                | 50      | 8                                                                        |
| 5:00 a.m.               | 56.0                  | 58.0                | 54.5                  | 47.5                | 54      | 4                                                                        |
| 6:00 a.m.               | 60.5                  | 60.5                | 55.0                  | 52.0                | 57      | 1                                                                        |
| 7:00 a.m.               | 60.5                  | 61.5                | 55.5                  | 50.0                | 57      | 1                                                                        |
| 8:00 a.m.               | 59.5                  | 59.0                | 57.0                  | 52.5                | 57      | 1                                                                        |
| 9:00 a.m.               | 59.0                  | 60.0                | 55.0                  | 52.0                | 57      | 2                                                                        |
| 10:00 a.m.              | 60.5                  | 63.0                | 53.5                  | 53.0                | 58      | 1                                                                        |
| 11:00 a.m.              | 60.0                  | 60.0                | 56.5                  | 51.0                | 57      | 1                                                                        |
| 12:00 p.m.              | 63.0                  | 59.5                | 55.0                  | 54.5                | 58      | 0                                                                        |
| 1:00 p.m.               | 62.0                  | 60.5                | 56.5                  | 52.5                | 58      | 0                                                                        |
| 2:00 p.m.               | 62.0                  | 59.5                | 54.5                  | 55.0                | 58      | 0                                                                        |
| 3:00 p.m.               | 62.0                  | 59.5                | 54.5                  | 56.0                | 58      | 0                                                                        |
| 4:00 p.m.               | 60.5                  | 62.0                | 54.0                  | 54.0                | 58      | 0                                                                        |
| 5:00 p.m.               | 60.0                  | 62.0                | 54.0                  | 52.5                | 57      | 1                                                                        |
| 6:00 p.m.               | 59.0                  | 57.5                | 55.0                  | 52.0                | 56      | 2                                                                        |
| 7:00 p.m.               | 57.5                  | 56.0                | 51.5                  | 51.5                | 54      | 4                                                                        |
| 8:00 p.m.               | 56.5                  | 55.0                | 52.5                  | 47.5                | 53      | 5                                                                        |
| 9:00 p.m.               | 55.0                  | 57.0                | 52.5                  | 47.5                | 53      | 5                                                                        |
| 10:00 p.m.              | 50.5                  | 55.0                | 53.0                  | 49.5                | 52      | 6                                                                        |
| 11:00 p.m.              | 54.0                  | 55.5                | 50.0                  | 51.0                | 53      | 5                                                                        |
| 24-hour L <sub>eq</sub> | 58.9                  | 58.7                | 53.9                  | 51.7                | 56      | NA                                                                       |
| 24-hour L <sub>dn</sub> | 62.4                  | 62.7                | 58.8                  | 56.4                | 60      | NA                                                                       |
| 24-hour CNEL            | 62.7                  | 62.9                | 59.1                  | 56.6                | 60      | NA                                                                       |

NOISE RESOURCES—VERSION 1, NOVEMBER 2005

**Table 6-20.** Summary of Long-Term Noise Monitoring at Position 13(Larson-Davis 0190

 Sound Meter)

#### Table 6-21. Summary of Log Sound Meter)

|                         |                        | 1-Hour dB-L <sub>eq</sub> |         |                                                                          | Time                    |           |
|-------------------------|------------------------|---------------------------|---------|--------------------------------------------------------------------------|-------------------------|-----------|
| Time                    | Wednesday<br>(12/1/04) | Thursday<br>(12/2/04)     | Average | Maximum Noise Hour dB-L <sub>eq</sub><br>minus Hourly dB-L <sub>eq</sub> |                         | Thursday  |
| 12:00 a.m.              | -                      | 38.5                      | 38.5    | 10                                                                       | 10.00                   | (12/2/04) |
| 1:00 a.m.               | -                      | 35.5                      | 35.5    | 13                                                                       | 12:00 a.m.              | 41.5      |
| 2:00 a.m.               | -                      | 35.5                      | 35.5    | 13                                                                       | 1:00 a.m.               | 38.0      |
| 3:00 a.m.               | _                      | 33.5                      | 33.5    | 15                                                                       | 2:00 a.m.               | 37.0      |
| 4:00 a.m.               | _                      | 34.5                      | 34.5    | 14                                                                       | 3:00 a.m.               | 37.5      |
| 5:00 a.m.               | _                      | 41.0                      | 41.0    | 8                                                                        | 4:00 a.m.               | 42.0      |
| 6:00 a.m.               | _                      | 43.0                      | 43.0    | 6                                                                        | 5:00 a.m.               | 46.0      |
| 7:00 a.m.               | _                      | 47.5                      | 47.5    | 1                                                                        | 6:00 a.m.               | 51.0      |
| 8:00 a.m.               | -                      | 45.5                      | 45.5    | 3                                                                        | 7:00 a.m.               | 52.0      |
| 9:00 a.m.               | -                      | 47.5                      | 47.5    | 1                                                                        | 8:00 a.m.               | 52.5      |
| 10:00 a.m.              | -                      | 46.0                      | 46.0    | 3                                                                        | 9:00 a.m.               | 50.0      |
| 11:00 a.m.              | -                      | 47.0                      | 47.0    | 2                                                                        | 10:00 a.m.              | 49.5      |
| 12:00 p.m.              | 46.5                   | _                         | 46.5    | 2                                                                        | 11:00 a.m.              | 53.5      |
| 1:00 p.m.               | 47.0                   | _                         | 47.0    | 2                                                                        | 12:00 p.m.              | 50.5      |
| 2:00 p.m.               | 45.5                   | _                         | 45.5    | 3                                                                        | 1:00 p.m.               | 50.0      |
| 3:00 p.m.               | 48.0                   | _                         | 48.0    | 1                                                                        | 2:00 p.m.               | 49.5      |
| 4:00 p.m.               | 48.5                   | _                         | 48.5    | 0                                                                        | 3:00 p.m.               | 50.5      |
| 5:00 p.m.               | 47.0                   | _                         | 47.0    | 2                                                                        | 4:00 p.m.               | 51.5      |
| 6:00 p.m.               | 45.5                   | _                         | 45.5    | 3                                                                        | 5:00 p.m.               | 50.5      |
| 7:00 p.m.               | 41.5                   | _                         | 41.5    | 7                                                                        | 6:00 p.m.               | 52.0      |
| 8:00 p.m.               | 42.0                   | _                         | 42.0    | 7                                                                        | 7:00 p.m.               | 49.5      |
| 9:00 p.m.               | 38.5                   | _                         | 38.5    | 10                                                                       | 8:00 p.m.               | 47.0      |
| 10:00 p.m.              | 40.5                   | _                         | 40.5    | 8                                                                        | 9:00 p.m.               | 50.0      |
| 11:00 p.m.              | 38.0                   | _                         | 38.0    | 11                                                                       | 10:00 p.m.              | 44.5      |
| 24-hour Log             | 44.6                   | 44.6                      | 44.6    | NA                                                                       | 11:00 p.m.              | 45.5      |
| 24-hour L <sub>dp</sub> | 47.4                   | 47.4                      | 47.4    | NA                                                                       | 24-hour L <sub>eq</sub> | 49.4      |
| 24-hour CNFI            | 47.7                   | 47.7                      | 47.7    | NA                                                                       | 24-hour L <sub>dn</sub> | 52.8      |
|                         |                        |                           |         |                                                                          | 24-hour CNEL            | 53.3      |

# NAPA COUNTY BASELINE DATA REPORT

#### Table 6-21. Summary of Long-Term Noise Monitoring at Position 16 (Larson-Davis 1406)

|                     | Maximum Noise         |                     |                     |                      |         |    |
|---------------------|-----------------------|---------------------|---------------------|----------------------|---------|----|
| Friday<br>(12/3/04) | Saturday<br>(12/4/04) | Sunday<br>(12/5/04) | Monday<br>(12/6/04) | Tuesday<br>(12/7/04) | Average |    |
| 42.0                | 42.5                  | 42.0                | 47.5                | 59.0                 | 46      | 7  |
| 41.0                | 41.5                  | 42.0                | 39.0                | 52.5                 | 42      | 11 |
| 43.5                | 41.0                  | 42.5                | 38.0                | 49.0                 | 42      | 11 |
| 42.5                | 39.5                  | 39.5                | 39.5                | 47.5                 | 41      | 12 |
| 44.0                | 43.5                  | 42.5                | 42.5                | 44.5                 | 43      | 10 |
| 46.0                | 44.0                  | 42.5                | 45.5                | 45.5                 | 45      | 8  |
| 57.0                | 45.5                  | 45.5                | 49.5                | 54.0                 | 50      | 3  |
| 59.0                | 47.0                  | 46.5                | 53.5                | 52.0                 | 52      | 1  |
| 54.5                | 52.5                  | 49.0                | 53.5                | 54.0                 | 53      | 0  |
| 49.5                | 47.5                  | 52.5                | 50.0                | 52.5                 | 50      | 3  |
| 50.5                | 49.0                  | 45.5                | 51.5                | 47.5                 | 49      | 4  |
| 50.0                | 54.0                  | 45.0                | 53.0                | 53.0                 | 51      | 2  |
| 52.0                | 49.5                  | 48.5                | 56.5                | 50.5                 | 51      | 2  |
| 52.0                | 49.5                  | 53.0                | 53.0                | 55.0                 | 52      | 1  |
| 49.5                | 48.5                  | 47.0                | 51.5                | 49.0                 | 49      | 4  |
| 51.0                | 50.5                  | 52.0                | 53.5                | 52.0                 | 52      | 1  |
| 52.5                | 48.0                  | 49.0                | 52.5                | 54.0                 | 51      | 2  |
| 50.5                | 52.5                  | 56.5                | 53.5                | 52.5                 | 53      | 0  |
| 55.0                | 51.0                  | 52.5                | 56.0                | 49.0                 | 53      | 0  |
| 48.5                | 47.0                  | 48.5                | 57.0                | 49.5                 | 50      | 3  |
| 51.0                | 51.5                  | 46.5                | 59.5                | 49.5                 | 51      | 2  |
| 57.0                | 45.5                  | 49.0                | 61.5                | 50.5                 | 52      | 1  |
| 49.5                | 51.5                  | 40.5                | 63.0                | 49.5                 | 50      | 3  |
| 49.5                | 49.5                  | 49.0                | 61.0                | 52.0                 | 51      | 2  |
| 52.2                | 49.1                  | 49.2                | 55.7                | 52.2                 | 51      | NA |
| 56.7                | 53.4                  | 52.3                | 62.2                | 59.0                 | 56      | NA |
| 57.3                | 53.8                  | 52.7                | 62.9                | 59.1                 | 57      | NA |

# **REFERENCES CITED**

# PRINTED REFERENCES

- Bishop, D. E. and A. P. Hays. 1977. Developing noise exposure contours for general aviation airports. (BBN-2964, DOT-FA75WA-3710, FAA-AS-75-1.) Bolt Beranek and Newman, Inc. Prepared for U.S. Department of Transportation, U.S. Federal Aviation Administration. Washington, DC.
- California Department of Transportation. 2005. 2004 Annual Average Daily Truck Traffic on the California State Highway System. State of California, Business, Transportation and Housing Agency. Sacramento, CA, Traffic and Vehicle Data Systems. August.
- California Governor's Office of Planning and Research. 2003. Guidelines for the Preparation and Content of the Noise Element of the General Plan. Appendix A in State of California General Plan guidelines. Sacramento, CA.
- Cowan, J. P. 1984. Handbook of environmental acoustics. Van Nostrand Reinhold. New York, NY.
- Environmental Science Associates, Inc. 1993. Napa Valley Wine Train Environmental Impact Report. San Francisco, CA.
- Federal Railroad Administration. 1998. High-Speed Ground Transportation Noise and Vibration Impact Assessment. Office of Railroad Development, Washington, D.C. December.
- Federal Transit Administration. 1995. Transit noise and vibration impact assessment. Washington, D.C.
- Hoover, R. M., and R. H. Keith. 1996. Noise control for buildings and manufacturing plants. Hoover and Keith, Inc. Houston, TX.
- Napa County Conservation Development and Planning Department. 1990. Napa County General Plan. March 5. Napa, CA.
- Miller, L. N. 1982. Noise Control for buildings and manufacturing plants. Bolt, Beranek and Newman, Inc. Cambridge, MA.
- Napa Valley Wine Train. 2005. Napa Valley Wine Train <sup>®</sup> Daily Operating Schedule. Last Revised: July 7, 2005. Available: <a href="http://www.winetrain.com/wttime.html">http://www.winetrain.com/wttime.html</a>. Accessed: September 13, 2005.
- Nelson, Paul. (ed.). 1987. Transportation Noise Reference Book. Butterworths. London, England.
- Sound Solutions. 2001. Noise Impacts and Mitigation in Connection with the Proposed Tom Eddy Winery, Napa County, California. October 10. Santa Rosa, CA.
- Toth, W. J. 1979. Noise abatement techniques for construction equipment. (HS-803 293; DOT-TSC-NHTSA-79-45: PB-300 948.) U.S. Department of Transportation, National Highway Traffic Safety Administration. Washington, DC.

- USDA Forest Service. 1980. Predicting Impact of Noise on Recreationists. ED&T Project No.2688. April 1980. San Dimas, CA.
- U.S. Environmental Protection Agency. 1971. Noise from construction equipment and operations, building equipment, and home appliances. (NTID300.1.) Prepared by Bolt, Beranek and Newman. U.S. Government Printing Office. Washington, DC.

# PERSONAL COMMUNICATIONS

- Crawford, Doris. Office Assistant. [City of] Napa Police Department, Napa, CA. October 21, 2005 telephone conversation with Shannon Hatcher
- Claudino, Lisa. Supervisor. Napa County Sheriff's Department, Napa, CA. October 21, 2005 telephone conversation with Shannon Hatcher
- Heide, Lance. Operations and Roads Superintendent. Napa County Public Works Department, Administration, Napa, CA. November 29, 2004—email to Shannon Hatcher.
- Sheppard, Mike. Staff member. Napa County Public Works Department, Road Mainenace Yards, Napa, CA. September 19, 2005—email to Shannon Hatcher.
- Swanson, Lynn. Records Supervisor, St. Helena Police Department, St. Helena , CA. October 19, 2005—telephone conversation with Shannon Hatcher.

NOISE RESOURCES—VERSION 1, NOVEMBER 2005

















Figure 6-5 Long-Term Noie Monitoring Position 7

