MONITORING PLAN FOR THE RUTHERFORD REACH RESTORATION OF THE NAPA RIVER WITH SITE-SPECIFIC DETAIL FOR Phase I (REACHES 1 and 2) & Phase II (Reach 3)

> Per agreement No. 07-542-550-0 State Water Resources Control Board

DRAFT

January 19, 2009

Prepared by:

Jones & Stokes 2841 Junction Ave, Suite 114 San Jose, CA 95134 Contact: Kevin MacKay (408)434-2244

> With assistance from: Gretchen E. Hayes Tessera Consulting 6549 Willowview Court Livermore, CA 94551 (925)455-4489

Lisa Micheli Sonoma Ecology Center P.O. Box 1486 Eldridge, CA 95431 707(996-0712 x 107)

Correspondence:

Napa County Flood Control and Water Conservation District 804 First Street Napa, CA 94559 Contact: Richard Thomasser (707)259-8657

TABLE OF CONTENTS

TABLES	III
INTRODUCTION	1
Project Setting	1
Project Objectives	2
PROJECT IMPLEMENTATION	2
Monitoring Program Overview	3
Sediment Load Reductions and Channel Morphology	3
Aquatic Habitat	3
Riparian Habitat	3
Stakeholder Participation	3
Oversight and Coordination	4
GRANT REQUIREMENTS	5
MONITORING FRAMEWORK	5
SEDIMENT LOAD REDUCTIONS AND CHANNEL MORPHOLOGY	9
Existing Conditions	9
Desired Outcomes	9
Restoration Treatments	9
Summary Hypotheses	
Performance Indicators	
Performance Standards	
Аquatic Навітат	
Existing Conditions	
Desired Outcomes	
Restoration Treatments	
Summary Hypotheses	
Performance Indicators	
Performance Standards	
Riparian Habitat	14
Existing Conditions	
Desired Outcomes	
Restoration Treatments	
Summary Hypotheses	
Performance Indicators	
Performance Standards	
STAKEHOLDER PARTICIPATION	
Existing Conditions	
Performance Indicators	
Performance Standards	
SCHEDULE	17
Annual Stream Reach Survey	
Repeated Channel Transect Surveys and Local Longitudinal Profiles	
Phased Vegetation Establishment Years 1,2,3,5 and 7	
As Air Photos Become Available	
As Events Occur	

MONITORING PROTOCOLS	27
ANNUAL STREAM REACH SURVEY	
Objectives	
Monitorina Parameters by Category	
Monitoring Parameter Methods	
Survey of Actively Froding Stream Banks	29
Weed Survey.	
Large Woody Debris Survey	
Streambank Stabilization Structure Status Assessment	
Aquatic Habitat Structure Status Assessment	
Photodocumentation of Annual Changes	54
Repeated Channel Transects and Local Longitudinal Profiles	
Objectives	
Monitoring Parameters by Category	
Monitoring Parameter Methods	
Cross Section Transects	
Local Longitudinal Thalweg Survey	
Residual Pool Depth Measurement Associated with Instream Structures	
Grid Pebble Counts at Riffle Crests Nears Cross Section Transects	
Photodocumentation of Cross Section Transects	
Phased Vegetation Establishment Surveys	53
Objectives	
Monitoring Parameters by Category	53
Monitorina Parameter Methods	
Riparian Vegetation Cross Section Transects: Direct Count	54
Line-Point Intercept Vegetation Survey	
Photodocumentation of Riparian Vegetation	
Air Photo Analysis	
STAKEHOLDER PARTICIPATION SURVEYS	
REPORTING	80
DATA MANAGEMENT	80
REFERENCES	82
APPENDIX A: RESTORATION EVALUATION BY REACH	101
Reach 1	102
Reach 2	
Reach 3	
Reach 4	
Reach 5	
Reach 6	
Reach 7	
Reach8	
Reach 9	

TABLES

Table 1. Monitoring Parameter Protocols, References, and Frequency by Category	6
Table 2. Monitoring Parameter Protocols, References, and Category by Frequency	18
Table 3. Rutherford Reach Proposed Monitoring Schedule	20
Table 4. Terms Describing Bank Stability Conditions ^a	30

INTRODUCTION

The purpose of this document is to define a Monitoring Program for the Rutherford Reach Restoration Project on the Napa River. Key program elements include a monitoring framework and defined protocols for evaluating monitoring parameters that provide measures of restoration effectiveness. This document defines specific field protocols, schedules, and field data sheets to be used to evaluate monitoring parameters. This document is intended for review by resource agencies and application by the project monitoring team. Monitoring team members may include local landowners and/or their representatives and Napa County Resource Conservation (RCD) staff, under the supervision of a Napa District Flood Control and Water Conservation District (District) team leader. This Plan has been developed by Jones & Stokes in coordination with technical experts from Sonoma Ecology Center, Tessera Consulting, and the District.

Project Setting

The project area is a 4.5-mile reach of the Napa River south of the City of Saint Helena, extending from Zinfandel Lane in the north to Oakville Cross Road in the south. This reach is comprised of approximately 40 parcels owned and managed by 29 different private entities. Historic changes in land use and management in the Napa River watershed have resulted in confinement of the river into a narrow channel, loss of riparian and wetland habitats, accelerated channel incision and bank erosion, and ongoing channel degradation. Properties along the 4.5-mile Rutherford Reach of the Napa River have been subject to bank instability and failure leading to the loss of valuable vineyard land and costly repairs.

The Napa River Rutherford Reach Restoration is a landowner-initiated project that aims to reduce existing bank erosion and enhance riparian and aquatic habitats using a suite of approaches, including: setting back earthen berms from the top of the river bank; creating vegetated buffers between the river and adjacent land uses; excavating and planting inset floodplain benches (1.5- to 2-year flood recurrence interval); creating backwater habitat to provide high-flow refugia for native fish; removing non-native invasive and Pierce's disease host species (e.g., Himalayan blackberry, periwinkle, giant reed, tree-of-heaven); planting native understory species; installing biotechnical bank stabilization to stabilize actively eroding banks; and, installing instream structures to improve aquatic habitat. The project also includes an annual maintenance program to proactively address debris, bank erosion, and inputs of fine sediments and to maintain the functions of the restoration features. Proposed maintenance activities include: debris removal; downed tree stabilization/relocation; in-channel vegetation management; planting native vegetation; invasive and Pierces's Disease host plant removal; and, repairing (as needed) instream habitat structures and other constructed features. All of this work is proposed for private lands along the study reach under the supervision of the District in concert with landowners and their representatives.

The Napa River is presently subject to a Clean Water Act Total Maximum Daily Load (TMDL) action due to excessive quantities of fine sediment degrading local water quality and beneficial uses. While sediment is a naturally-occurring input to the Napa River system, excessive amounts are considered a pollutant, and thus sediment load reductions mentioned in this report amount to 'pollutant reductions' in TMDL terms. The Rutherford Reach Restoration Project serves to support the TMDL objective of reducing fine sediment loads and as a result has been designated

a regional priority by the San Francisco Bay Regional Water Quality Control Board responsible for TMDL development and implementation.

Project Objectives

This monitoring plan will evaluate and document the progress of the Napa River Rutherford Reach Restoration towards meeting its objectives using a system of monitoring methods, indicators, and performance standards. Project objectives driving the restoration design include the following:

- Reducing fine sediment loads due to accelerated rates of channel bed and bank erosion.
- Minimizing the need for piecemeal efforts at channel stabilization and berm construction on the part of local landowners.
- Rehabilitating natural river/floodplain interactions where possible within the new channel corridor.
- Increasing and enhancing riverine, riparian, and floodplain habitat value and complexity, particularly to support increased quality and quantity of habitat for Chinook salmon and California freshwater shrimp.
- Wherever possible, protecting existing high value riparian corridor habitat patches.
- Re-establishing geomorphic and hydrologic processes to support a continuous and diverse native riparian corridor.
- Removing invasive non-native vegetation and replanting with native vegetation that will not promote Pierce's disease in vineyards.
- Working closely with landowners to address their interests with regard to adjacent farmland and property.
- Rehabilitating the river in a way that facilitates permitting agency approval.

Project Implementation

The Rutherford Reach Restoration Project will be constructed in phases over approximately the next 10 years contingent on available funding and landowner/District priorities. The 4.5 mile project reach has been defined by a stream stationing system and has been divided into nine subreaches extending from upstream to downstream. As of October 2008, a preliminary project design has been completed for all nine subreaches with Coastal Conservancy funding under the supervision of the RCD.

Phase 1 of project implementation, which treats river subreaches 1 and 2, is planned for completion by the close of 2009. Phase 1 funders include the State Water Resources Control Board, with match funding provided by Napa County (Measure A funds), and the project landowners. Project implementation planning and construction is overseen by a Project Team that includes the County Program Manager, District Construction Project Managers, the Rutherford Dust Restoration Team Landowner Advisory Committee (LAC), with the benefit from input of a Project Strategy Team that includes technical experts and representatives from interested resource agencies.

A detailed description of the preliminary design and supporting documentation are available at the Watershed Information Center and Conservancy (WICC) of Napa County website at <u>http://www.napawatersheds.org</u>.

Monitoring Program Overview

The Monitoring Program is aimed at evaluating the success of the Rutherford Reach Restoration Project. It has two main components: 1) an Annual Survey of the entire 4.5 mile reach, which is aimed at capturing both critical monitoring parameters and maintenance needs using rapid assessment formats; and, 2) detailed Transects including topographic cross-sections and localized longitudinal profile surveys to be conducted following significant flow events to capture long term habitat response. These monitoring field survey elements are complemented with basic photo-monitoring at defined stations, detailed monitoring of revegetation sites conducted in phases as project areas are planted, and surveys of stakeholder participation. Refer to the Monitoring Protocols section below for a detailed description of the protocols that are to be conducted in each monitoring component.

We are employing a Before/After Control/Impact (BACI) approach for long term measuring change of geomorphic, aquatic and riparian habitat parameters (Roni 2005; Gerstein & Harris, 2005). Monitoring parameters have been chosen to measure changes in targeted resource categories in response to stream enhancements. Detailed Transects complement the Annual Survey and are designed to balance the frequency and resolution of data collection in the most meaningful and yet cost-effective manner possible.

Specific resource categories keyed to project objectives include the following.

Sediment Load Reductions and Channel Morphology

Evaluating changes in basic stream channel geometry, bank condition, and resultant sediment loads in treated and untreated river reaches.

Aquatic Habitat

Evaluating changes in aquatic habitat quantity and quality associated with installed instream structures, including those aspects of active channel morphology that drive the creation and maintenance of habitat complexity.

Riparian Habitat

Evaluating increases in riparian habitat quantity and quality and planting survival in treated reaches.

Stakeholder Participation

Evaluating success of stakeholder coordination in maintaining meaningful levels of participation.

The Annual Survey will be conducted within the entire length of the bankfull channel every year in order to evaluate the status of constructed features and to rapidly assess effects on fine sediment loading, channel morphology, and habitat features. (The Annual Survey also serves the Maintenance Plan objectives by identifying any emerging new areas of management concern along the channel due to debris deposition or bank instability—see *Final Maintenance Plan for*

the Napa River Rutherford Reach Restoration Project (Napa County Resource Conservation District, August 2008) for details.)

Transects provide greater resolution for selected habitat and channel morphology parameters at representative project locations and are timed to capture the effects of peak floods (with return intervals of approximately five years and higher). Transects will evaluate changes across the entire channel and adjacent portions of the floodplain by integrating topographic cross-section surveys with habitat mapping conducted concurrently. Transects may, as needed, be complemented with localized longitudinal channel thalweg surveys centered on the transect to measure detailed changes in geomorphic, aquatic, and riparian habitat parameters within the stream channel in response to instream structures. The specific parameters to be evaluated at each transect will be contingent on restoration technique applied. "Treatment" Transects will be complemented with "no treatment" Transects for comparison.

Photo-monitoring stations will be established and re-occupied in the course of monitoring surveys to provide a visual record of progress. Site-specific monitoring of riparian revegetation sites will capture rates of survival and establishment and quantities of native relative to non-native vegetation.

A stakeholder survey and ongoing documentation of participation levels will address the success of community engagement.

The project team will coordinate with partner agencies responsible for complementary water quality, fish, and wildlife monitoring including the Water Board, RCD, and others and will encourage an active exchange of data and findings.

The duration of the monitoring program is designed to coincide with the 20-year extent of the maintenance program.

Oversight and Coordination

The District is responsible for oversight of project maintenance and monitoring, as part of its responsibilities as lead construction agency and holder of regulatory permits, in concert with the LAC. The LAC has been established to help prioritize maintenance and to coordinate access required for the maintenance and monitoring program elements with local landowners and vineyard managers. The LAC requested that the District Board adopt a Special Benefit Zone Project, funded through a property tax assessment program under procedures established in the District Act, to conduct maintenance in the Rutherford reach of the Napa River. This Special Benefit Zone is referred to as the Rutherford Reach River Maintenance District (Maintenance District).

The LAC is comprised of landowner representatives and is supported by District staff. Participation in the LAC is open to any landowner, or their representative, who have river frontage within the Rutherford Reach. The LAC will select three (3) representatives from the LAC to represent the recommendations of the LAC to the District Board. The three representatives will be designated as the Chair, Co-Chair, and Secretary of the LAC, and will serve for a 2-year period. It is anticipated that the LAC will meet biannually to review, evaluate, and prioritize annual maintenance activities based on the Maintenance Surveys, landowner maintenance requests, and available funding, and to review and approve the annual maintenance report.

All maintenance and monitoring activities will be conducted in compliance with regulatory permits issued in conjunction with the Rutherford Reach Restoration Project, with oversight by the District.

Grant Requirements

Development of this program has been funded by the 2005-2006 Consolidated Grants Proposition 40-50 Agricultural Water Quality program under Agreement Number 06-282-552-01, administered by the State Water Resources Control Board (Water Board) to the County of Napa as grantee. Match funding is provided by Napa County Measure A funds, and covers 50% of project implementation costs. Maintenance and monitoring costs are financed by match funding provided by project landowners via the Maintenance District. All of the deliverables herein are fulfill specific requirements of the Water Board grant.

MONITORING FRAMEWORK

The monitoring program framework links project objectives to proposed monitoring elements based on our understanding of process-based relationships between existing conditions and restoration techniques aimed at achieving desired outcomes. For each desired outcome we have defined specific performance indicators and standards. Project success will be evaluated by quantifying progress towards meeting performance standards over the life of the project. This framework provides a strategy for long-term monitoring of the entire 4.5 mile reach and provides a basis for defining specific locations and timetables for Phase 1 (subreaches 1 and 2, slated for completion in late 2009). Thus, this section defines general principles applicable to the entire project, followed by sections that address detailed protocols plus a customized site-specific program for Phase 1. Table 1 provides a summary of performance indicators, standards, and monitoring activities, and monitoring frequency organized by monitoring category.

The following section addresses existing conditions, restoration treatments, desired outcomes, monitoring indicators, and performance standards for each resource category. See **Appendix A** for a detailed breakdown by subreach for site-specific treatments matched to desired outcomes for subreaches 1-9. (For greater analytic detail on data used as a basis for evaluating existing conditions and on geomorphic, engineering, and vegetation and wildlife design criteria applied to project design, please refer to *Final Basis of Design Report for the Napa River Rutherford Reach Restoration Project*, Napa County RCD, October 2008. Alpha-numeric design criteria labels referred to here are more fully explained in that report.)

Table 1. Monitoring Parameter Protocols, References, and Frequency by Category

Monitoring Parameter	Protocols	Reference Sources	Frequency
Length of Actively Eroding Banks (Failing graded slopes, mass wasting, slumps, flows, etc)	Longitudinal Stream Survey, Photodocumentation	Gerstein and Harris (2005) Harrelson et al. (1994) Nossaman et al. (2007)	Annually
Channel Adjustment: Bed Deposition or Scour in Control Versus Treated Reaches	Cross Section Transects, Local Longitudinal Thalweg Survey, Photodocumentation	Flosi et al / CDFG. (1998) Gerstein (2005) Harrelson et al (1994) Gerstein (2005) Harrelson et al (1994)	Pre-and Post- Construction, and/or Post Significant Channel Forming Event
Bankfull Width to Depth Ratio: Entrenchment	Cross Section Transects	Fitzpatrick et al (1998) Rosgen (1996)	Pre-and Post- Construction, and/or Post Significant Channel Forming Event
Flood Stage / High Water Mark	Cross Section Transects	Fitzpatrick et al (1998)	Pre-and Post- Construction, and/or Post Significant Channel Forming Event
Bank Stability (Rates of Widening at reference vs. restored cross sections)	Cross Section Transects	Gerstein and Harris (2005) Nossaman et al. (2007)	Pre-and Post- Construction, and/or Post Significant Channel Forming Event
Channel Planform Network	Air Photo Analysis (As Available)	Fitzpatrick et al (1998)	Post Significant Channel Forming Event; As Available

Sediment Load Reductions and Channel Morphology

Aquatic Habitat

Monitoring Parameter	Protocols	Reference Sources	Frequency
Large Woody Debris Logs and Jams (>12 inch diameter, or clump of >4 pieces)	Longitudinal Stream Survey, Photodocumentation	Gerstein (2005) Flosi et al / CDFG. (1998)	Annually
Riffle Habitat Length	Cross Section Transects, Local Longitudinal Thalweg Survey at Select Locations of Installed Structures	Flosi et al / CDFG (1998) Gerstein (2005) Harrelson et al. (1994)	Pre-and Post- Construction, and Post Significant Channel Forming Event
Residual Pool Depth (Change in Pool Storage of Fines)	Cross Section Transects, Local Longitudinal Thalweg Survey at Select Locations of Installed Structures	Lisle (1987)	Pre-and Post- Construction, and Post Significant Channel Forming Event
Channel Substrate Size Distribution / Riffle Median Grain Size (D50)	Modified Wolman Pebble Count, and/or Grid Pebble Count at Riffle Crests near Cross Section Transects	Bunte & Abt (2001) Cover et al (2008) Fitzpatrick et al (1998) USDA (2003) Wolman (1954)	Pre-and Post- Construction, and Post Significant Channel Forming Event
Area of High Flow Refugia Within Bankfull at Constructed Alcoves	Local Longitudinal Thalweg Survey, Velocity Profile, Photodocumentation	Flosi et al / CDFG. (1998)	Post Significant Channel Forming Event

Riparian Habitat

Monitoring Parameter	Protocols	Reference Sources	Frequency
Areas requiring weed	Longitudinal Stream Survey,	Harris (1999, 2005)	Annually
control, including	Photodocumentation,	Herrick et al (2005 a)	
infestations of Pierce's	Land Owner Request Forms,	Interagency Technical	
disease host species	Vegetation Surveys	Reference (1996)	
Riparian Vegetation Buffer	Cross Section Transects,	Harris (1999, 2005)	Pre-and Post-
Width	Vegetation Surveys		Construction, and/or
	Air Photo Analysis (As Available)		Post Significant
			Channel Forming
			Event
Riparian Vegetation Buffer	Cross Section Transects,	Harris (1999, 2005)	Establishment Years,
Width	Vegetation Surveys		1,2,3,5,and 7
	Air Photo Analysis (As Available)		
Number of Pierce Disease	Vegetation Surveys	Herrick et al (2005 a)	Establishment Years,
Plants		Interagency Technical	1,2,3,5,and 7
		Reference (1996)	
Restoration Planting	Cross Section Transects;	Nossaman et al.	Establishment Years,
Survival	Photodocumentation	(2007)	1,2,3,5,and 7
		Harris (1999, 2005)	
		Gaffney (2008)	
Herbaceous Composition:	Line-Point Intercept Vegetation	Herrick et al (2005 a)	Establishment Years,
Relative abundance of	Transects	Interagency Technical	1,2,3,5,and 7
native versus non-native		Reference (1996)	
plant cover		Gaffney (2008)	

Stakeholder Participation

Monitoring Parameter	Protocols	Reference Sources	Frequency
Landowner participation in	Opinion surveys of	FISRWP (2001)	As Events Occur
adaptive riparian monitoring	effectiveness		
and management			
Landowner workshop	Meeting minutes; Surveys of	FISRWP (2001)	As Events Occur
participation	participation		

Existing Conditions

Changes in land use and land cover types, construction of earthen berms, and filling of historic distributary channels has resulted in increased flow volumes and velocities within the Rutherford Reach leading to channel incision, and streambank erosion and failure. In addition, inputs of fine sediments into the channel from eroding streambanks and other sources within the watershed has led to a reduction in the quality and quantity of instream habitat for salmonids and other native fish in the Rutherford Reach.

To better quantify the effects of these changes and to identify areas requiring treatment as part of the restoration project, actively eroding streambanks were mapped and bank instability was assessed throughout the Rutherford Reach in 2005-2007. Approximately 6,000 linear feet of actively eroding streambank was identified within the Rutherford Reach. Additionally, a comparison of the channel invert profile from data collected in 1972 and 2005/2007 shows that the channel bed has degraded from approximately 5 feet in the lower half of the reach to approximately 10 ft in the upper half of the reach during this period.

Desired Outcomes

The desired outcomes for this category focus on reducing contributions of fine sediment to the Napa River by reducing rates of channel bank erosion and bed incision and creating a more stable long term channel configuration.

The goals/desired outcomes for sediment load reduction and channel morphology are as follows.

- Decrease the total length of eroding streambanks
- Reduce rates of bank retreat and stabilize severely eroding banks.
- Reduce rates of channel incision.
- Create inset bankfull (1.5 year flood elevation) and mid-level terraces.
- Create sustainable geometries for setback channel banks and berms.
- Minimize the need for ongoing channel stabilization and maintenance work.

To achieve these desired outcomes, the project design employs a suite of treatments described below.

Restoration Treatments

Restoration treatments to reduce sediment load and stabilize channel morphology include:

• Increase Riparian Buffer Width, and Where "Levees" Exist, Berm Set-back and Replacement

The overall aim here is to maximize channel width and counteract confinement and concentration of flows in the channel. This technique aims to satisfy design criteria that include: establish a minimum 50' buffer between the active floodplain (defined by the 2-yr return interval flow) to allow for future widening (GHH-5); establish replacement berm elevations based on estimated maximum water surface elevations and define an 8:1 back slope to minimize scour due to overtopping (E-2, E-3). Since the current piecemeal berm system was assembled in a

haphazard, undocumented manner, replacement of berm structures to a consistent engineering standard reduces risks of catastrophic berm/bank blow outs.

• Channel Reconfiguration

This approach focuses on grading/recontouring of streambanks to counter oversteepening and installation of inset flood terraces to reduce the effect of flow shear on bed and banks. Applied design criteria include: create floodplain bench cuts (at or below an elevation equal to the 2-year recurrence interval flood) in locations of active erosion to widen the channel and reduce local velocities (GHH-4); stabilize incised river sections by grading back channel banks from bench cuts to top of bank, with a preferred side slope of 3:1 (E-1).

Bank Stabilization

Where width does not permit application of an inset bench cut, other stabilization methods have been applied. Relevant design criteria include: when feasible, utilize soft engineering techniques such as willow plantings, placement of geotextiles, and appropriate grading to control moderate bank erosion and to reduce fine sediment loading (E-4); where softer methods are not feasible, install rock protection where significant erosion threatens structures or infrastructure (E-5).

• Grade Control Boulders and Weirs

These measures are the least frequently applied, and focus on locations of active incision. The relevant design criteria is: install grade control structures (e.g. constructed riffles, boulder weirs) in shallow runs to prevent future incision of the channel, limit the hydraulic drop to less than 1' and the longitudinal slope to less than 12.5% (8:1) (GHH-1).

Summary Hypotheses

Historic patterns of channel confinement and incision have served to destabilize stream banks, a significant source of fine sediment impairing the water quality and supported beneficial uses of the Napa River. Since it is not feasible to restore the river to its full historic width, a suite of treatments are proposed based on opportunities and constraints, in the following order of priority. Wherever feasible, channel width should be increased by setting back bank top berm/levees or banks to reduce shear forces on bed and banks by reducing flow depths. If berm setback includes re-engineering the replacement berm to a standard geotechnical and hydraulic standard, risks of catastrophic blowouts due to berm failure will be reduced. Where feasible, bank recontouring/grading to establish a two-stage channel (described as an "inset floodplain) can reduce flow shear on banks and bed by reducing total bank height and alleviating pressure at flow "choke points." Reducing bank slopes of terrace features and elsewhere to greater than 3:1 can reduce the risk of mass failure triggered by undermining of bank toe materials. In cases of severely eroding banks adjacent to restrictive land uses (structures, etc) biotechnical bank stabilization can serve to reinforce the bank toe to prevent further fluvial entrainment and consequent mass failure.

Performance Indicators

Performance indicators for sediment load reductions and channel morphology are listed below (units in parentheses):

- Length of actively eroding streambanks over the project reach (L or %L);
- Rates of bed deposition and scour at representative cross-sections (L or Vol/T);
- Bankfull width to depth ratio (W/D) at representative treatment cross-sections (dimensionless).

Progress towards the desired outcome will result in an overall reduction in estimated fine sediment loading from actively eroding banks and an incising channel bed within the Rutherford Reach. Annual Surveys will identify, map, and evaluate areas of actively eroding streambanks on an annual basis. Data will be collected for basic channel morphology indicators (erosion rates and W/D as part of Transect surveys at the representative locations.

Performance Standards

The performance standard for reducing sediment loads and improving channel morphology is:

• A 75% reduction in the length of actively eroding streambanks in the entire project reach and on a subreach basis. (Instead of specific numeric performance targets for bed and bank erosion rates and width to depth ratios, successful performance will be defined as positive trends in reductions in bed and bank erosion rates; and increases in bankfull channel width to depth ratios as measured using repeat Transect surveys at representative cross-section locations).

Aquatic Habitat

Existing Conditions

Aquatic habitat within the Rutherford Reach consists of long runs and glides, with fewer deep pools, and occasional riffles. Pool depths typically exceed 3 feet and occasionally reach a maximum depth of approximately 8 feet. When present, cover in the pools consist of deep water, undercut banks, instream woody material, and overhead cover in the form of low growing riparian vegetation. In general, less cover and fewer cover types are present in runs and riffles compared to pools. Cover in these habitats consists of undercut banks, overhead cover from riparian vegetation, and instream woody material. The predominant substrate in the reach is gravels and sand-sized particles, although more sand than gravel is commonly present. Finer substrates, such as clay- and silt-sized particles, are generally absent. Average particle size (D₅₀) on the bars and riffles sampled in 2005 varied from approximately 8mm to 50mm, with an average of 23mm. In comparison, preferred spawning habitat for Chinook salmon typically consists of bed material ranging from 25 to 102 mm in size.

In summary, the diversity and abundance of native fish (including salmonids) in the Rutherford Reach is limited by a combination of factors including; the lack of high flow refugia, instream and overhead cover; the high percentage of homogenous deep glides and pools that favor exotic predatory fish; and the lack of pool/riffle variability and suitable spawning habitat.

Desired Outcomes

The goals/desired outcomes for aquatic habitat quality are as follows.

- Increase habitat complexity by inducing local velocity accelerations, increasing flow pattern complexity, and breaking up existing flat-water habitat.
- Increase the quantity of riffle habitat available for spawning.
- Improve riffle habitat quality by inducing sorting of bed and bar material, resulting in increased deposition of spawning-sized sediments and decreased in percentages of fines covering riffle crests / pool tails.
- Increase average residual pool depth for juvenile rearing.
- Create high-flow refugia to increase winter rearing value.
- Increase instream cover to reduce predation.

To achieve these desired outcomes, the project design employs a suite of treatments described below.

Restoration Treatments

Restoration treatments to improve aquatic habitat include:

• Installed In-Channel Features

A variety of in-stream structures are proposed to created channel irregularities capable of creating flow velocity accelerations that in turn cause bar deposition or pool scour, cause bed material sorting (coarsening of riffles), and provide instream cover..

Large Woody Debris, Spider Logs, and other Log-Boulder Structures
 The following design criteria apply: install large woody debris to promote localized scour along channel margins to increase cover (AH-1); install woody structures to narrow the low flow channel by ¼ to 1/3 of its original width to promote spawning gravel deposition (AH-2), reduce fine sediment deposition (AH-3), provide refugia (velocities less that 6 fps) for flows 500 cfs and above (AH-5), and promote more frequent pool-riffle sequences (AH-7).

• Life Plant Material: Native Willow Cuttings, Off-Bench Branch Cover, Branch Bundles. Soft structures such as willow cuttings and branch cover/bundles create in-stream cover needed to evade predation.

o Constructed Riffles

Large rock placed in grade control structure has the added benefit of adding hydraulic and geometric complexity to the channel and providing habitat for aquatic species (E-7).

o Backwater Alcoves

These features simulate confluence conditions with historic secondary channels. Design criteria: construct secondary or backwater channels with a gradient of at least .005 to maintain drainage towards channel and prevent fish stranding (AH-6).

Summary Hypotheses

Processes of channel confinement and incision have reduced aquatic habitat complexity by creating a "plane bed" morphology due to increases in shear forces acting on the bed. Project gains in channel width alone will be insufficient to restore habitat complexity, and there is no indication that the channel would be capable of reclaiming its original width under a "no-action " alternative in less than a century. Installation of in-stream structures will create variations in hydraulic forces by creating obstructions to flow and creating irregular channel roughness elements. Hydraulic complexity will increase deposition and sorting of bar-sized sediments in transport, resulting in increased area of bar and riffle features and deeper pools. Large woody debris and live plant material placed within the channel will provide much needed cover to avoid predation, especially during the summer rearing season. Created backwater habitats and constructed riffles will increase winter rearing value by creating low-velocity refugia during peak floods.

Performance Indicators

Progress toward the goals/desired outcomes for aquatic habitat quality improvements will be based on (units in parentheses):

- Channel substrate size distribution (median statistic values for size frequency distribution, % fine sediment)
- Riffle length (L) and riffle frequency (#/L)
- Residual pool depth (L);
- Large woody debris structure persistence (# years, % persisting);
- Riparian/overhead cover (%);
- Area of high-flow refugia (A).

Progress toward the desired outcomes for aquatic habitat structures will in part be based on the persistence/long-term viability of the installed structures. Field surveys, conducted as part of the maintenance program, will evaluate the integrity of the structures on an annual basis. Data will be collected for the other indicators as part of the permanent cross section transect and local longitudinal profile surveys (described below).

Performance Standards

The performance standards for aquatic habitat quality are:

- A statistically significant increase in riffle median grain size (D50 mm);
- A statistically significant reduction in riffle substrate percentage of fines (<2mm);
- A 30% increase in riffle length or riffle frequency in representative treated locations;
- A 25% increase in residual pool depth in representative treated locations;
- A 75% persistence of installed instream habitat enhancement structures.

A performance standard was not established for area of high-flow refugia, since there are no baseline values for comparison; however, data from successive monitoring periods will be compared to identify and evaluate changes in alcove morphology.

Riparian Habitat

Existing Conditions

The species composition and the width and extent of the riparian corridor vary considerably throughout the Rutherford Reach depending on channel width, bank steepness, and adjacent land uses . In general, Reaches 1, 2, 3, and 5 support the largest intact stands of mature riparian vegetation. Valley oak (Quercus lobata), coast live oak (Quercus agrifolia), and California walnut (Juglans hindisi) are the dominant species in these reaches. Reaches 3, 5, 6 and 7, where the wider channel permits development of bars and inset floodplain benches, support extensive stands of Fremont cottonwood (*Populus fremontii*), white alder (*Alnus rhombifolia*), red willow (Salix laevigata), arroyo willow (Salix lasiolepis), yellow willow (Salix lutea), and sandbar willow (Salix exigua). Overstory vegetation is relatively sparse in Reach 4 consisting of small stands or individual valley and coast live oaks. California bay (Umbellularia californica), blue elderberry (Sambucus mexicana), and California buckeye (Aesculus californica) are also found within the project area. The width of the riparian corridor (including vegetated areas along both banks) is greatest in Reach 1 (600 to 800 feet). The riparian corridor in Reaches 3, 5, 6, and 7 is also relatively wide, ranging from 250 to 400 feet in width. Reaches 2, 4, 8, and 9, which are confined by levees and adjacent land use, support narrow bands of riparian vegetation (150 feet or less).

In many portions of the Rutherford Reach, the riparian understory is dominated by non-native species including Himalayan blackberry (*Rubus discolor*), periwinkle (*Vinca major*), and wild grape (*Vitis* sp.). Other non-native invasive species such as giant reed (*Arundo donax*) are also pervasive throughout the project area. However, other areas support substantial patches of native understory species including snowberry (*Symphoricarpos albus*), Santa Barbara sedge (*Carex barbarae*), creeping wild rye (*Leymus triticoides*), and California rose (*Rosa californica*). In these reaches, it is not unusual to find areas dominated by native overstory and understory species removal and revegetation projects implemented by local landowners to control Pierce's disease, and by the District to control giant reed.

In general, the extent and diversity of riparian habitat found within the project area is limited by the morphology of the channel. In most reaches the confined nature of the channel prevents the establishment of inset floodplain benches and bars that would enable recruitment and establishment of riparian species. Additionally, channel incision has increased channel capacity and decreased the frequency of overtopping leading to the development of a more xeric mix of plant species (e.g., oaks) along the top of the river bank.

Desired Outcomes

The goals/desired outcomes for riparian habitat quality are as follows:

- Increase and enhance riparian and floodplain habitat value and complexity, with secondary benefits of improving bird and wildlife diversity.
- Create a self-sustaining native riparian corridor.
- Decrease invasive non-native and Pierce's Disease host plants.
- Increase diversity of native plant species.
- Maintain expanded riparian buffer width.

To achieve these desired outcomes, the project design employs a suite of treatments described below.

Restoration Treatments

Restoration treatments to improve riparian habitat include:

• Non-Native Vegetation Removal

Remove dense patches (greater than .01 acre) of invasive exotic and non-native Pierce's Disease (PD) host plants and replant with native under and overstory plants (VW-6)

• Native Restoration Plantings

Relevant design criteria include: establish planting zones based on water surface elevations and distance from channel (VW-3); establish a minimum 50' buffer to reduce disturbance to native wildlife and encourage migration (VW-4); fill existing canopy gaps < 25' in length (VW-5); increase plant diversity and structure to improve quality for resident and migrant wildlife, especially riparian-dependent birds (VW-7); obtain all plant material from Napa River watershed (VW-10); salvage native plant material for transplanting onto newly excavated benches and slopes (VW-11); irrigate all newly established plant material (VW-13); stabilize exposed soils using a hydromulch consisting of a native (or sterile) seed mix (VW-14).

Summary Hypotheses

Interruption of historic patterns of disturbance due to flooding has reduced riparian corridor width and interrupted succession processes critical to recruitment and survival of native riparian vegetation species and communities. Absent significant change in the geomorphic regime (outside the scope of this project), the riparian community will continue to decline as older trees die and recruitment is impaired due to numerous factors (lack of suitable geomorphic surfaces for colonization, competition with invasive plan species, seed/seedling predation by introduced species, etc). Artificial creation of inset flood terraces and bank setback and grading increases the area suitable for riparian recruitment. In particular in terms of created flood terraces, designing terraces for inundation at approximately the two-year return interval event creates new disturbance zones where future recruitment may be self-sustaining, assuming invasives continue to be controlled as part of project maintenance.

Performance Indicators

- Progress toward the goals/desired outcomes for riparian habitat quality improvements will be based on (units in parentheses):
- Area successfully treated (acres)
- Plant survival at revegetation sites (%)
- Percent native vegetative cover: Absence/presence natural recruitment (no units).

Vegetation monitoring data will be collected at specific revegetation sites by the landscape contractor under District supervision and at Transects (which may contain both sites with no vegetation treatment and treatment sites) by the District-led monitoring team (see protocols for details).

Performance Standards

The performance standards for riparian habitat quality are:

- A minimum of 6 acres riparian habitat established for Phase 1, and 20 acres over the life of the project (acres);
- A 75% survival of native plants at revegetation sites;
- Greater than 90% native cover (less than 10% total non-native);
- Evidence of successful natural recruitment by year 5 at revegetation sites

Photomonitoring will complement field surveys with a visual record of progress.

Stakeholder Participation

Existing Conditions

The Rutherford Dust Restoration project is a landowner-initiated project. This leadership has been central to the success of the project. Maintaining Landowner buy-in and active participation will remain a key element of project viability. Through community outreach, this private-public partnership can serve as a model for other communities.

Performance Indicators

The performance standards for stakeholder participation are:

- Landowner participation in adaptive monitoring and management
- Landowner Advisory Committee participation

Performance Standards

• Continuation of at least 90% landowner participation in the project.

- Continued landowner leadership, as evidenced via the Landowner Advisory Committee (LAC) and willingness to fill offices (Chair, Vice-Chair, Secretary).
- Ongoing access granted for team members, including Napa County Flood District and the Napa County Resource Conservation District.

SCHEDULE

As of the writing of this document, the anticipated schedule for the construction of the project is as follows:

Phase	Subreaches	Year
Phase 1	Subreaches 1 and 2	2009
Phase 2	Subreach 3	2011
Phase 3	Subreaches 7 and 8	2014
Phase 4	Subreaches 4, 5, 6 and 9	2017

Table 2 provides a summary of performance indicators, standards, and monitoring activities organized by monitoring frequency.

Table 3 illustrates the anticipated schedule for construction of project phases, and associated monitoring.

Stream surveys will commence in 2009 and continue annually through the 20-year duration of the River Maintenance District.

Repeated transect surveys are scheduled before and after the construction of each phase. The cross section transects in each phase will be surveyed pre-construction, and within two years post-construction, thereafter at least once every five years. Cross section transects may be also resurveyed after a significant channel forming flood event, or as deemed necessary by findings during the annual stream reach survey. Transects will be re-occupied and surveyed in the event of a channel changing flood event to re-establish baseline surveys before the construction of a phase, as well as to monitor changes in constructed project reaches. Transects will be re-occupied and surveyed at least once every 5 years in the absence of a channel forming event, unless annual stream surveys indicate minimal change.

Re-vegetated riparian areas will be monitored in establishment years 1,2,3,5 and 7 beginning a year after Phase 1 completion in 2010.

Photomonitoring will be incorporated into the annual stream reach survey, repeated cross section transect surveys, and phased vegetation establishment surveys. Photomonitoring of project progress will be conducted at least once every three years.

As air photos become available, and as the project budget allows, the riparian buffer width and stream network will be assessed and incorporated in the spatial database.

Evaluation of stakeholder participation in events will take place as those events occur.

DRAFT

Page 17

Annual Stream Reach Survey

Monitoring Parameter	Protocols	Reference Sources	Category
Length of Actively Eroding Banks (Failing graded slopes, mass wasting, slumps, flows, etc)	Survey of Actively Eroding Streambanks, Photodocumentation	Gerstein and Harris (2005) Harrelson et al. (1994) Nossaman et al. (2007)	Sediment Load Reductions & Channel Morphology
Large Woody Debris Logs and Jams (>12 inch diameter, or clump of >4 pieces)	Stream Reach Survey (GPS in and rank based on risk to bank stability or channel obstruction)	Gerstein (2005) Flosi et al / CDFG. (1998)	Aquatic Habitat Quality
Areas requiring weed control	Longitudinal Stream Survey Photodocumentation Land Owner Request Forms	Harris (1999, 2005)	Riparian / Floodplain Habitat Quality

Repeated Channel Transect Surveys and Local Longitudinal Profiles

Monitoring Parameter	Protocols	Reference Sources	Category
Channel Adjustment:	Cross Section Transects,	Flosi et al / CDFG.	Sediment Load
Bed Deposition or Scour in	Local Longitudinal Thalweg Survey,	(1998)	Reductions &
Control Versus Treated	Photodocumentation	Gerstein (2005)	Channel
Reaches		Harrelson et al (1994)	worphology
		Gerstein (2005)	
		Harrelson et al (1994)	
Bankfull Width to Depth	Cross Section Transects	Fitzpatrick et al (1998)	Sediment Load
Ratio: Entrenchment		Rosgen (1996)	Reductions &
			Channel
			Morphology
Flood Stage / High Water	Cross Section Transects	Fitzpatrick et al (1998)	Sediment Load
Mark			Reductions &
			Channel
			Morphology
Donk Stobility	Cross Section Transacto	Caratain and Harria	Sodimont Lood
Barik Stability	Cross Section mansects		Reductions &
(Rates of Widening at		(2005)	Channel
reference vs. restored cross		Nossaman et al.	Morphology
sections)		(2007)	1 07
Channel Planform Network	Local Longitudinal Thalweg Profile;	Fitzpatrick et al (1998)	Sediment Load
	Photodocumentation		Reductions &
	Air Photo Analysis (As Available)		Channel
			worphology
Riffle Habitat Length	Habitat Unit Survey:	Flosi et al / CDFG	Aquatic Habitat
	Cross Section Transects,	(1998)	Quality
	Local Longitudinal Thalweg Profile	Gerstein (2005)	
	Survey at Selected Locations of	Harrelson et al. (1994)	
Residual Pool Depth	Cross Section Transects and	Lisle (1987)	Aquatic Habitat
(Change in Pool Storage of	Local Longitudinal Thalweg Profile		Quality
Fines)	at Selected Locations of Installed		
	Structures		
Channel Substrate Size	Modified Wolman Pebble Count,	Bunte & Abt (2001)	Aquatic Habitat
Distribution / Rime wedian	and/or Grid People Count at Riffle	Cover et al (2008)	Quality

Grain Size (D50)	Crests near Cross Section Transects	Fitzpatrick et al (1998) USDA (2003) Wolman (1954)	
Area of High Flow Refugia Within Bankfull at Constructed Alcoves	Local Longitudinal Thalweg Profile; Velocity Profile; Photodocumentation	Flosi et al / CDFG. (1998)	Aquatic Habitat Quality
Riparian Vegetation Buffer Width	Cross Section Transects, Vegetation Surveys Air Photo Analysis (As Available)	Harris (1999, 2005)	Riparian / Floodplain Habitat Quality

Phased Vegetation Establishment Years 1,2,3,5 and 7

Monitoring Parameter	Protocols	Reference Sources	Category
Riparian Vegetation Buffer Width	Cross Section Transects, Vegetation Surveys Air Photo Analysis (As Available)	Harris (1999, 2005)	Riparian / Floodplain Habitat Quality
Restoration Planting Survival	Cross Section Transects, Photodocumentation	Nossaman et al. (2007) See pg 6 Harris (1999, 2005) Gaffney (2008)	Riparian / Floodplain Habitat Quality
Herbaceous Composition: Relative abundance of native versus non-native plant cover	Line-Point Intercept Vegetation Transects	Herrick et al (2005 a) Interagency Technical Reference (1996) Gaffney (2008)	Riparian / Floodplain Habitat Quality
Pierce Disease Host Plant Infestation Locations	Vegetation Surveys	Herrick et al (2005 a) Interagency Technical Reference (1996)	Riparian / Floodplain Habitat Quality

As Air Photos Become Available

Monitoring Parameter	Protocols	Reference Sources	Category
Channel Planform Network	Air Photo Analysis	Fitzpatrick et al (1998)	Stream Channel Geometry, Capacity, & Stability
Riparian Vegetation Buffer Width	Cross Section Transects, Vegetation Surveys Air Photo Analysis	Harris (1999, 2005)	Riparian / Floodplain Habitat Quality

As Events Occur

Monitoring Parameter	Protocols	Reference Sources	Category
Landowner participation in	Landowner maintenance	FISRWP (2001)	Stakeholder
adaptive monitoring and	requests and access		Participation
management	agreements		
Landowner Advisory	Meeting minutes; Surveys of	FISRWP (2001)	Stakeholder
Committee (LAC)	participation; Opinion surveys		Participation
participation	of effectiveness		

											<u></u>												
	Transects	_	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Year		Frequency				_			-														<u> </u>
Nth Year			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Stream Reach Survey		Annually																					
Transects & Local		Pre- Project Post-Project																					
Longitudinal Profiles	14	and Post Flood	3	6		3			6		6	5		8	3	3		5	3	3	3		5
Riparian Vegetation Surveys		Establishment Years 1,2,3,5,7																					
		Concurrent with all																					
Photomonitoring		Monitoring																					
			008	600	010	11	112	013	14	15	16	017	18	119	020	021	022	123	024	125	026	027	028
Year		Frequency	50	50	50	20	50	50	50	50	50	50	50	50	20	50	50	50	20	50	50	20	50
Nth Year			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Stream Reach Survey		Annually		###	###	###	###	###	###	###	###	###	###	###	###	###	###	###	###	###	###	###	###
Baseline & Repeated Channel																							
Cross Section Transects &		Pre- & Post-Project, Post																					
Local Longitudinal Profiles	14	Channel Forming Flood Event	3	6		3			6		6	5		8	3	3		5	3	3	3		5
																							1
Phase 1 (Subreaches 1 & 2)	3		3	3	-			-	3					3				-	3				┝──
Phase 2 (Subreach 3)	3			3		3			2		3				2	3				2	3		<u> </u>
Phase 3 (Subreaches 7 & 8)	3								3		3	_			3					3			-
Phase 4 (Subreaches 4, 5, 6, 9)	5											5		5				5					5
		Establishes and Marson							_														
Rinarian Vegetation Surveys		Establishment Years,																					
		1,2,3,3,7																					
Phase 1 (Subreaches 1 & 2)				###	###	###		####		####													
Phase 2 (Subreach 3)				<u> </u>		###	###	###		###													
Dhase 2 (Culture share 7 9 0)			1	1	1	1	1	1	1	1	4444	####	####		###		####						
Phase 3 (Subreaches 7 & 8)						-					###	###	###										ļ
Phase 3 (Subreaches 7 & 8) Phase 4 (Subreaches 4, 5, 6, 9)											###	****	****	###	###	###		###		###			

Table 3. Rutherford Reach Proposed Monitoring Schedule

	Concurrent with all													
Photomonitoring	Monitoring	### ###	###	###	###	###	###	###	###	###	###	###	###	###

MONITORING PROTOCOLS

Annual Stream Reach Survey

Objectives

The objectives of the Annual Stream Reach Survey are to:

- Identify any new locations of bank erosion, and prioritize maintenance actions, including vegetation management, large woody debris (LWD) realignment and/or relocation, debris/large trash removal, and biotechnical stabilization;
- Evaluate the status of, and define the steps needed to maintain the function of constructed instream habitat enhancement structures;
- Evaluate the effect of installed instream structures on channel morphology; specifically on the formation of pools and gravel bars;
- Indentify infestations of non-native invasive and Pierce's disease host plant species, and define control treatments to the extent practicable.

The District will work with the LAC to develop standard data sheets for the Annual Stream Reach Survey, which will be conducted concurrently with the Maintenance Survey. Data sheets, aerial photographs, and GPS units will be used to document the nature and extent of the problem, and to identify recommended treatments or remedial actions. Photos will also be taken to document each problem site. The results of the survey will be compiled into a report and presented to the LAC for review. Reports will be archived with the Napa County Resource Conservation District.

Flood District staff, in coordination with the LAC, will conduct these routine (at least once a year) surveys to identify and assess issues of concern relative to the program objectives. It may also be necessary to conduct interim river surveys shortly after large storm events (< 10-year flood event) to identify areas that may require immediate treatment to prevent additional streambank failure, and to protect existing infrastructure and environmental resources. The Annual Stream Reach Survey will also be used as a tool to determine when more in-depth long term monitoring cross section transect surveys are required.

Monitoring Parameters by Category

The Annual Stream Reach Survey will along the entire length of the 4.5 mile Rutherford Reach. The parameters to be identified, mapped and assessed in the Annual Stream Reach Survey are presented in Table 2.

In addition to determining maintenance needs for the treated areas of the project, the following stream assessment parameters will be evaluated during the annual survey:

- Length of Actively Eroding Banks (Failing graded slopes, mass wasting, slumps, etc)
- Large Woody Debris Logs and Jams (>12 inch diameter, or clump of >4 pieces); and their effect on channel morphology;
- The effect of Installed Instream Structures on channel morphology;
- Areas requiring weed control.

Monitoring Parameter Methods

The following protocols will be used to assess the above parameters:

- Survey of Actively Eroding Streambanks; and Bank Erosion Factors
- Assessment of Streambank Stabilization Structures
- Survey of Large Woody Debris and Geomorphic Function
- Assessment of Aquatic Habitat Instream Structures, and Geomorphic Function
- Weed Infestations
- Photodocumentation
- Land Owner Request Forms

The methods for conducting these protocols are discussed individually below.

Survey of Actively Eroding Stream Banks

Objectives

The length of actively eroding channel banks will be measured during the Annual Stream Reach Survey to assess the effectiveness of bank stabilization treatments in reducing sediment loads to the stream.

<u>Methods</u>

The survey of actively eroding streambanks will measure and assess:

- Length of actively Eroding Streambanks
- Streambank Stability

Prior to construction, Jones and Stokes conducted a survey of eroding streambanks based on definitions of bank conditions in the U.S. Forest Service Region 5 *Stream Condition Inventory Technical Guide, Pacific Southwest Region* (USDA, 2005): <u>http://www.fs.fed.us/r5/publications/water_resources/sci/techguide-v5-08-2005-a.pdf.</u> During the Annual Stream Reach Survey, record only unstable and potentially unstable stream banks on the Annual Stream Reach Form. During the Annual Stream Survey inventory areas of excessive vegetation growth, trash, large woody debris or other factors

contributing to streambank erosion.

The term 'bank instability' refers to stream banks that are either actively retreating or have the potential to retreat in the near future. Bank instability was assessed in all previously surveyed areas (i.e., the PWA survey), and any other areas with unstable or potentially unstable banks. The purpose of assessing this indicator is to identify fluvial erosion (erosion associated with flowing water) and bank failure (erosion associated with gravitational forces and weakening processes). In brief, weakening processes are any bank or near-bank processes that act to erode or prepare banks for further erosion (Lawler, 1992). Fluvial erosion is closely related to boundary shear stress, which can be loosely approximated by unit stream power variations, and bank failure is collapse of all or part of the bank in situ (Lawler, 1995).

Bank stability is defined as a natural streambank that has stable groundcover. Stable ground cover includes rooted trees, shrubs, herbaceous plants, and naturally occurring rocky substrates. The terms defined in Table 4 were used to describe observed bank instability conditions in the initial survey. Instability codes have been updated to correlate with Collins (2008) Qualitative Monitoring Feature Codes.

Qualitative Monitoring Feature Codes

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Implementati on_Monitoring/Supporting_Documents/Checklist_Letter_Codes_2008.pdf

Photograph unstable banks and banks requiring maintenance on the Photo Data Sheet.

Category	Term	Definition
Banks	Stable bank	Has 75% or more cover of live plants and/or other stability elements that are not easily eroded and has no instability elements
	Potentially unstable bank	Has 75% or more cover but has 1 or more instability $element(s)^{b}$
	Unstable bank	Has less than 75% cover of live plants and/or other stability elements and/or 1 or more instability element(s) (unstable banks are often bare or nearly bare banks composed of noncohesive soil that is susceptible to fluvial erosion; particle size may vary depending on bank material)
Stability elements	Live plants	Perennial herbaceous species, such as grasses, sedges, rushes; woody shrubs, such as willows; broadleaf trees, such as cottonwood and alder; conifer trees; and plant roots that are on or near the surface of the bank and provide substantial binding strength to the bank material
	Rock	Boulders, bedrock, and cobble/boulder aggregates that are combined to form a stable mass
	Downed wood	Logs firmly embedded in banks
	Erosion-resistant soil	Hardened conglomerate or cohesive clay/silt banks
Instability elements	HIG - Bank height	Moderately high to high bank height relative to surrounding banks
	SMP - Fracturing, blocking, or slumping	Cracks near the top of the bank, slumping banks, and blocks of soil/plant material that have fallen off or slid down the bank
	LDS- Landslides & Mass movement	Bank failure from landslides and gravity erosion of oversteepened bank slopes
	UND - Undercutting	Frequent or continuous scour; significant to severe undercutting

Table 4. Terms Describing Bank Stability Conditions ^a

Based on definitions of bank conditions in the U.S. Forest Service Region 5 *Stream Condition Inventory Guidebook*.

' Exception: Bank will be classified as stable if bank height is the only instability element present.

Start	Station		Stream Na	me:		Date:	Surveyors:	
			Annua	l Strear	n Reach Sur	rvey - Eroding Banks, Weed Control	, LWD	
GPS PT	FROM +US/-DS	TO +US/-DS	Length	Bank	Problem Feature	Description	Recommendation	Priority
	(feet)	(feet)	(feet)	Right, Left, Channel	Unstable or Potential Unstable Eroding Bank; Weed Control Site; Erosive LWD; Trash	Location Description; Height or Area Dimension; Bank Instability Element (HIG-Bank Height, SMP-Slump or Fractured Bank, LDS-Landslide or Mass Movement; UND-Undercut), Problem; Type of Weed; Pierce Disease; LWD Accumulations and Jams with High Erosion Potential		High, Medium, Low

For further information on assessing bank stability, see the Bank Stability Line Intercept Transect protocol and data sheet outlined in Gerstein and Harris (2005) *Monitoring the Effectiveness of Bank Stabilization Restoration*, and updated by Nossaman (2007), *Quantitative Effectiveness Monitoring of Bank Stabilization and Riparian Vegetation Restoration: A Field Evaluation of Protocols*.

Sampling Locations

The entire length of the Rutherford Reach, between stream channel stations 0 and 24,900, will be assessed to determine the length of actively eroding streambanks.

Phase 1: Reaches 1 and 2

The annual stream survey of eroding banks in Phase 1 (Reaches 1 and 2) will be conducted between river stations 18,600 and 24,900.

Phase 2: Reach 3

The annual stream survey of eroding banks in Phase 2 (Reach 3) will be conducted between river stations XXX and 18,600.

Sampling Schedule

The Annual Stream Reach Survey will be conducted each spring.

Phase 1: Reaches 1 and 2

It is anticipated that Phase 1: Reaches 1 and 2 will be constructed by spring 2009, and the post-construction annual stream survey will commence in spring 2010.

Phase 2: Reach 3

It is anticipated that Phase 3: Reach 3 pre-project baseline surveys will be conducted in spring 2009, and that construction will occur in spring 2010, and the post-construction annual stream survey will commence in spring 2011.

Protocol References and Data Forms

Flosi, G., S. Downie, J. Hopelain, M. Bird, R. Coey, and B. Collins / CDFG (1998) California Salmonid Stream Habitat Restoration Manual, Third Edition. Sacramento, California, California Department of Fish and Game, Inland Fisheries Division. <u>http://www.dfg.ca.gov/nafwb/pubs/1998/manual3.pdf</u>

Gerstein, J.M. and R.R. Harris. (2005)

Protocol for Monitoring the Effectiveness of Bank Stabilization Restoration. University of California, Center for Forestry, Berkeley, CA. 24 pgs. http://www.cnr.berkeley.edu/forestry/comp_proj/DFG/Monitoring%20the%20Eff ectiven ess%20of%20Bank%20Stabilization%20Restorati.pdf

Nossaman, S., M. Lennox, D. Lewis, P. Olin. (2007) Quantitative Effectiveness Monitoring of Bank Stabilization and Riparian Vegetation Restoration: A Field Evaluation of Protocols. University of California Cooperative Extension. http://ucce.ucdavis.edu/files/filelibrary/2161/36783.pdf

USDA (2005) Frazier, J.W., et al *Stream Condition Inventory Technical Guide*. USDA Forest Service, Pacific Southwest Region – Ecosystem Conservation Staff. Vallejo, CA 111pp. <u>http://www.fs.fed.us/r5/publications/water_resources/sci/techguide-v5-08-2005-a.pdf</u>

Washington State Department of Natural Resources (2007, November) Watershed Analysis Manual Version 4.0.

http://www.dnr.wa.gov/Publications/fp_wsa_manual_section06.pdf

Washington State Department of Natural Resources (2008) Forest Practices Board Watershed Analysis Manual <u>http://www.dnr.wa.gov/ResearchScience/Topics/WatershedAnalysis/Pages/fp_wa</u> <u>tershed_analysis_manual.aspx</u>

Weed Survey

Objectives

The objective of the annual weed survey is to identify locations where weeds, invasive plants, and Pierce disease host plants require removal to allow for the successful recruitment of native vegetation and prevent the spread of Pierce Disease.

<u>Methods</u>

During the Annual Stream Survey inventory areas requiring weed control, including weeds, invasive plant species, and Pierce disease plants. On the Annual Stream Reach Survey form record the station of the site requiring removal of invasive weeds. Record the GPS waypoint number. Record whether the location is on the right or left bank. Provide a written description of the location of the site on the bank, approximate area requiring treatment, and other relevant observations. Describe the type of weed to be removed, and whether it is a Pierce Disease Plant. Indicate whether it is a high, medium, or low priority.

Photograph areas requiring weed control on the Photo Data Sheet. These observations will be complemented by Landowner Maintenance Requests to deal with floodplain infestations.

Start	Station		Stream Na	me:		Date:	Surveyors:	
			Annua	l Strear	n Reach Sur	rvey - Eroding Banks, Weed Control	, LWD	
GPS PT	FROM +US/-DS	TO +US/-DS	Length	Bank	Problem Feature	Description	Recommendation	Priority
	(feet)	(feet)	(feet)	Right, Left, Channel	Unstable or Potential Unstable Eroding Bank; Weed Control Site; Erosive LWD; Trash	Location Description; Height or Area Dimension; Bank Instability Element (HIG-Bank Height, SMP-Slump or Fractured Bank, LDS-Landslide or Mass Movement; UND-Undercut), Problem; Type of Weed; Pierce Disease; LWD Accumulations and Jams with High Erosion Potential		High, Medium, Low

Sampling Locations

The locations of invasive weeds and Pierce Disease Plants requiring removal will be mapped along the entire Rutherford Reach, between stream channel stations 0 and 24,900, and ranked according to their potential to cause bank erosion and propagate larger or new infestations.

Phase 1: Reaches 1 and 2

The annual stream reach survey of invasive weeds and Pierce Disease Plants in Phase1 (Reaches 1 and 2) will be conducted between river stations 18,600 and 24,900.

Phase 2: Reach 3

The annual stream reach survey of invasive weeds and Pierce Disease Plants in Phase 2 (Reach 3) will be conducted between river stations XXX and 18,600.

Sampling Schedule

The Annual Stream Reach Survey will be conducted each spring. The locations of invasive weeds and Pierce Disease Plants requiring removal will also be examined upon notification by a landowner of a problem.

Phase 1: Reaches 1 and 2

It is anticipated that Phase 1: Reaches 1 and 2 will be constructed by spring 2009, and the post-construction annual stream survey will commence in spring 2010.

Phase 2: Reach 3

It is anticipated that Phase 3: Reach 3 pre-project baseline surveys will be conducted in spring 2009, and that construction will occur in spring 2010, and the post-construction annual stream survey will commence in spring 2011.

Large Woody Debris Survey

Objectives

An inventory of large woody debris and log jams will be made annually along the Rutherford Reach to identify locations where woody debris is adversely affecting channel bank stability, and to evaluate LWD function on channel geomorphology and aquatic habitat.

Methods

Use the LWD form to record

- The location of LWD
- The potential for bank erosion due to LWD
- Habitat complexity provided by LWD

Map the location of LWD by river station, GPS waypoint, bedform association, and position in channel. Document the geomorphic function provided by the LWD. Document the potential for bank erosion due to LWD.

For LWD configurations that consist of more than one piece (A or J), and have a high probability of contributing to bank erosion (High), document the channel width, debris type, species class, age class, recruitment mechanism, and dimensions of the jam. Indicate the location of LWD requiring maintenance on the Annual Stream Reach Survey form.

We created a LWD inventory form that is compatible with the data gathered and codes used in the LWD forms by Gerstein (2005), Flosi et al /CDFG (1998) and Washington State Department of Natural Resources (2008). We have also used three letter CDFG CRMEP Qualitative Monitoring Codes by Collins (2008), which will be incorporated into Flosi et al / CDFG (1998) Chapter 8.

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Implementati on_Monitoring/Supporting_Documents/Checklist_Letter_Codes_2008.pdf

Photograph LWD accumulations and jams with a high potential for bank erosion or requiring maintenance on the Photo Data Sheet.

Record the following information about LWD on the data form:

Beginning River Station

Ending River Station

GPS Waypoint

Bedform AssociationPOOPoolRIFRiffle

- GLI Glide
- **BOL** Boulder
- **TER** Terrace
- **CUT** Cut Bank
- **MND** Meander Bend
- **SDC** Side Channel
- **TRB** Tributary Channel

Use other codes as necessary.

Debris Location in Channel

- **S** Side of the channel.
- M Mid-channel
- I Island. At upstream end of mid-channel island.
- **F** Full channel. Completely across channel within active channel.

Pieces may be above the wetted channel at the time of the survey. When part of a jam, include all pieces regardless if they are touching the water, piled up, or submerged.

O Over channel.

Suspended over the active channel with the ends above the active channel. Include debris with suspended bole but with branches in water.

LWD Function

STB-BNK	Bank stability (a=single piece, b=debris)
STB-RIF	Riffle Bar stability
	(a=single, b=bar apex jam, c=meander bend, d=channel cutoff jam)
POO	Pool scour
SED	Sediment storage
TER	Step or terracene former
CHN	Channel creator

Configuration / Pieces of Debris

- S Single piece.
- **A** Accumulation. Two to nine pieces.
- J Jam. Ten pieces or more.

Bank Erosion Potential

- L Low
- M Medium
- H High

Channel Width at LWD Elevation (feet)

Debris Type

NT Natural. Broken ends or whole tree.
- **CE** Cut end.
- AT Artificial. Is or was part of man-made structure
- **RN** Root wad attached to Natural bole.
- **RC** Root wad with opposite end Cut.
- LV Live tree or root.

Species Class

Determine if LWD piece is hardwood or conifer, record "H1" or "C." Four letter species codes may also be used if desired, e.g., PSME, ARME, etc.

Age Class

- F Fresh
- R Recent
- E Established
- D Decaying

Recruitment Mechanism.

- **PR** Placed in channel by Restoration
- **DR** Dislocated Restoration piece, moved from original location
- **BN** Bank Erosion, Natural
- **BR** Bank erosion, due to Restoration
- **IR** Intercepted floating LWD by Restoration structure
- LR Landslide due to Restoration structure
- LN Landslide, Natural
- **WN** Windthrow, Natural
- MR Mortality, Natural
- **EN** Exhumed from alluvium, Natural
- UK Unknown

Length Class

Count and tally the number of pieces within each length class. Root wad less than ten feet long (usually with a cut end) is a special case. For trees >80 feet long, record actual length in comments section.

Diameter (DBH) Class

Estimate diameter class to the nearest 10 feet at mid-point along LWD piece, or for rootwads at 4.5 feet above the base of the stem (dbh).

Start Station		Stream Na	ame:			Date:			S	urveyors	8:			
			Large	Wood	y Debri	s Inven	tory an	d Asso	ciated	l Geon	norph	ology		
								LWD	Accumu	ations and	l Jams w	vith High B	ank Erosion Pot	ential
GPS PT	FROM +US/-DS (feet)	TO +US/-DS (feet)	Bedform	Location in Channel	LWD Function	Config /Pieces	Bank Erosion Potential	Channel Width @ LWD Elev	Туре	Species Class	Age Class	Recruit- ment	Length (10s of feet)	DBH(feet)

Start	Start Station Stream Name: Date: Surveyors:							
	Annual Stream Reach Survey - Eroding Banks, Weed Control, LWD							
GPS PT	FROM +US/-DS	TO +US/-DS	Length	Bank	Problem Feature	Description	Recommendation	Priority
	(feet)	(feet)	(feet)	Right, Left, Channel	Unstable or Potential Unstable Eroding Bank; Weed Control Site; Erosive LWD; Trash	Location Description; Height or Area Dimension; Bank Instability Element (HIG-Bank Height, SMP-Slump or Fractured Bank, LDS-Landslide or Mass Movement; UND-Undercut), Problem; Type of Weed; Pierce Disease; LWD Accumulations and Jams with High Erosion Potential		High, Medium, Low

Sampling Locations

The locations of LWD will be mapped along the entire Rutherford Reach, between stream channel stations 0 and 24,900, and ranked according to their potential to cause bank erosion.

Phase 1: Reaches 1 and 2

The annual stream reach survey of LWD in Phase1 (Reaches 1 and 2) will be conducted between river stations 18,600 and 24,900.

Phase 2: Reach 3

The annual stream reach survey of LWD in Phase 2 (Reach 3) will be conducted between river stations XXX and 18,600.

Sampling Schedule

The Annual Stream Reach Survey will be conducted each spring. The locations of LWD with the potential to exacerbate bank erosion will also be examined for damage after large flood events (>5year recurrence interval), or upon notification by a landowner of a problem.

Phase 1: Reaches 1 and 2

Construction of Phase 1: Reaches 1 and 2 is scheduled for spring 2009, and the post-construction annual stream survey will commence in spring 2010.

Phase 2: Reach 3

It is anticipated that Phase 2: Reach 3 pre-project baseline surveys will be conducted in spring 2009, and that construction will occur in spring 2010, and the post-construction annual stream survey will commence in spring 2011.

Protocol References and Data Forms

Flosi, G., S. Downie, J. Hopelain, M. Bird, R. Coey, and B. Collins / CDFG (1998)

California Salmonid Stream Habitat Restoration Manual, Third Edition. Sacramento, California, California Department of Fish and Game, Inland Fisheries Division. http://www.dfg.ca.gov/nafwb/pubs/1998/manual3.pdf

Gerstein , J.M. (2005)

Monitoring the Effectiveness of Instream Habitat Restoration. http://forestry.berkeley.edu/comp_proj/DFG/Monitoring%20the%2 0Effectiveness%20of %20Instream%20Habitat%20Restoration.pdf

Washington State Department of Natural Resources (2008)

Forest Practices Board Watershed Analysis Manual, Watershed Analysis Appendices E-Stream Channel Assessment Version 4.0 E-95 November 1997 http://www.dnr.wa.gov/ResearchScience/Topics/WatershedAnalysi

s/Pages/fp_watershed_analysis_manual.aspx;

Washington State Department of Natural Resources (2007, November) Watershed Analysis Manual Version 4.0.

http://www.dnr.wa.gov/Publications/fp_wsa_manual_section06.pdf

Washington State Department of Natural Resources (2008) Forest Practices Board Watershed Analysis Manual <u>http://www.dnr.wa.gov/ResearchScience/Topics/WatershedAnalysis</u> <u>s/Pages/fp_watershed_analysis_manual.aspx</u>

Streambank Stabilization Structure Status Assessment

Objectives

The objective for assessing the status of installed streambank stabilization structures is to determine whether they require maintenance, and whether they are functioning to curb bank erosion.

<u>Methods</u>

The status of installed streambank stabilization structures will be assessed during the Annual Stream Reach Survey per the protocol outlined in the *California Salmonid Stream Habitat Restoration Manual, Part VIII, Project Evaluation and Monitoring* (Flosi et al / CDFG, 1998). To record streambank stabilization structure data use the *Stream habitat Enhancement Project Evaluation Individual Structure or Site Form* located on page VIII-17. The structure objective code for watershed and streambank stability improvement treatments is "2". The form allows for the recording of the location, condition, and recommendations for repairing the structure. Use stream stationing for the reference point. Add a GPS waypoint number. While recording the status of restoration structures, simultaneously record data on associated habitat type.

Supplement the Flosi et al /CDFG form with the CB-Channel Reconstruction & Bank Stabilization Post-Treatment Evaluation Form by Collins (2008), which will be incorporated in to Flosi et al / CDFG (1998) in 2009. Use the codes from Collins (2008) to fill out the forms.

Post-Treatment Form (Collins 2008)

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2 008%20Effectiveness_Monitoring/Checklists/2b%20CB_Post_Cha nnelBankReconstruction_2008.pdf

Qualitative Monitoring Feature Codes

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2 008%20Implementation_Monitoring/Supporting_Documents/Check list_Letter_Codes_2008.pdf

Treatment Types

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2 008%20Implementation_Monitoring/Supporting_Documents/Treat ment_Type_Codes_2008.pdf Photograph and log the photo description of streambank stabilization structures requiring maintenance or of interest on the Photo Data Sheet.

STREAM HABITAT ENHANCEMENT PROJECT EVALUATION INDIVIDUAL STRUCTURE OR SITE FORM

STREAM HABITAT ENHANCEMENT PROJECT EVALUATION INDIVIDUAL STRUCTURE OR SITE FORM

STREAM: DRAIN/	GE: PAGE of
DATE:/ STREAM PNAME:	PNAME CODE:
EVALUATOR(s) :	CONTRACT NO.: FY:/
REFERENCE POINT:	LAT:LONG: (DECIMAL DEGREES) (DECIMAL DEGREES)
FEET FROM REFERENCE POINT: UI	DN CHANNEL TYPE:
RESTORATION OBJECTIVE: 1 2 3 (circle one)	TYPE OF STRUCTURE:
HOW WELL IS STRUCTURE MEETING HABITAT OBJECTIVE	E? (circle number)
1 (EXCELLENT) 2 (GOOD) 3 (FAIR) COMMENTS:	4 (POOR)5 (NO VALUE)
CONDITION OF STRUCTURE - consider structural integrity only	(circle number):
1 (EXCELLENT) 2 (GOOD) 3 (FAIR) COMMENTS:	4 (POOR) 5 (NOT VISIBLE)
1. ANCHOR FAILURE	OGS/BOULDERS STRANDED OUT OF CHANNEL, BANK EROSION AT SITE AND/OR DOWNSTREAM, BEATED SEDIMENT TRAP, OOR DESIGN, OOR PLACEMENT, EX-FENCE FAILURE, DTHER
Repair recommended: Yes No Enhancement to improve cover	or effectiveness recommended: Yes No
HABITAT TYPE (associated with structure)	BANKFULL STREAM WIDTHFT.
MAXIMUM POOL DEPTHFT.	DEPTH OF POOL TAIL CRESTFT.
SHELTER COMPLEXITY: 0 1 2 3 x SHELTER % C	DVER: = SHELTER RATING:
OBSERVED SALMONIDS NO : 0+, 1+, 2+_ COMMENTS:	, ADULTS, REDDS
REVEGETATION: RIPARIANUPSLOPEBOT	H(Photo required for reveg.) DESCRIBE DENSITY:
PHOTO NO. PRINT: ROLLFRAME,	SLIDE: ROLLFRAME
COMMENTS:	

CB - CHANNEL RECONSTRUCTION & BANK STABILIZATION

POST-TREATMENT

Grant #:	Project title:
O I M I I I I	* · · · J · · · · · · · · ·

Project Feature Type Code Feature Type Code a. Length of treated channel and/or streambank monitored: (ft) a. Length of instream habitat improved: (ft) 2. Was bioengineering used at this feature? If Y, use RT also. 3. Feature condition: Excl, Good, Fair, Poor, Fail 4. Are problems with the feature visible? a. Type: ANC, BBB, CRF, MAT, SHF, STA, UND, UNS, WSH, OTH 5. Is the feature still in its original location, position & orientation? 6. If an objective, was instream shelter and habitat improved? 7. Large woody debris count in treatment area: (D >1, 1, 6-20 / D >1, 1, >20) 8. If an objective, dd the feature increase LWD count in the treatment area? a. LWD recruitment methods. ANC, EXC, EVH, INT, RP, UNA, OTH 9. Stream channel problems within the treatment area: AGG, BRD, FLO, GRC, HDC, INC, NAR, SCH, STR, DG, WJD, OTH 10. If an objective, was active channel width reduced within the treatment area? a. Average active channel width in the treatment area: (ft) 11. If an objective, was the frequency or length of dy stream decreased?* 13. Did the residual maximum water depth in the treatment area: increase? a. Auctinum residual water depth in the treatment area: increase? a. Maxtimum residual water depth in the treatment area: increase? a. Maxtimum residual water depth in the treatment	Dat	e : Evaluator: Site ID:	pag	ge of
Feature Type Code a Length of instruct hand in the monitored: (ft) a Length of instruct hand in the monitored: (ft) a Length of instruct hand in the feature? If Y, use RT also. a Colspan="2">Colspan="2" 3 Seature Type Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2"		Project Feature Number		
Image: Second		Feature Type Code		
a Largth of instream habitat improved: (f) 2. Was bioengineering used at this feature? If Y, use RT also. 3. Feature condition: Excl. Good, Fair, Poor, Fail 4. Are problems with the feature visible? a. Type: ANC, BBB, CRF, MAT, SHF, STR, SWA, UND, UNS, WSH, OTH 5. Is the feature still in is original location, position & orientation? 6. If an objective, dive the feature interest. UD count in the reatment area? 6. If an objective, dive the feature interest. UD count in the transment area? 7. Large woody debris count in treatment area? 8. If an objective, dive the feature increases. UWD count in the treatment area? a. LWD recruitment methods: ANC, EXC, EXH, INT, RPR, UNA, OTH 9. Stream channel problems within the treatment area? AGG, BBD, FLO, GRC, HDD, ON, OTH 10. If an objective, was the frequency or length of dry stream decreased?* 11. If an objective, was the frequency or length of dry stream decreased?* 12. If an objective, was the frequency or length of dry stream decreased?* 13. Did the residual maximum water depth in treatment area? (0) 14. Ist?2nd dominant substrate: SLC, SND, GRV, COB, BOL, BED, OTH 15. Was there sediment deposition at the feature? a. Did sediment deposition at the feature? b. Did sediment deposition at the feature? c. Did sediment deposition at the feature?		1. Length of treated channel and/or streambank monitored: (ft)		
2. Was bioengineering used at this feature? If Y, use RT also. 3. Feature condition: Excl, Good, Fair, Poor, Fail 4. Are problems with the feature visible? a. Type: ANC, BBB, CRF, MAT, SHF, STR, SWA, UND, UNS, WSH, OTH 5. Is the feature still in its original location, position & orientation? 6. If an objective, was instream shelter and habitat improved? 7. Large woody debris count in treatment area: (D>1', L 6-20' / D>1', L >20) / / / / / 8. If an objective, was instream shelter and habitat improved? 9. Stream channel problems within the treatment area? a. LWD recruitment methods: ANC, EXC, EXH, INT, RPR, UNA, OTH 9. Stream channel problems within the treatment area: AGG, BRD, FLO, GRC, HDC, INC, NAR, SCU, STI, WID, NON, OTH 10. If an objective, was active channel width reduced within the treatment area? a. Average active channel width in the treatment area? a. Average active channel width in the treatment area? 11. If an objective, was active channel width reduced within the treatment area? a. Average active channel width in the treatment area? 12. If an objective, was the frequency or length of dy stream decreased?* 13. Did the residual maximum water depth in the treatment area? a. Average active channel width reduced within the treatment area? a. Average active channel width reduced active arease? a. Average ac	#	a. Length of instream habitat improved: (ft)		
a). Feature condition: Excl, Good, Fair, Poor, Fail		2. Was bioengineering used at this feature? If Y, use RT also.		
a. Are problems with the feature visible?	e	3. Feature condition: Excl, Good, Fair, Poor, Fail		
a. Type: ANC, BBB, CRF, MAT, SHF, STR, SWA, UND, UNS, WSH, OTH b. Is the feature still in its original location, position & orientation? c. If an objective, was instream shelter and habitat improved? 7. Large woody debris count in treatment area: (D >1', L 6-20 / D >1', L >20) 7. Large woody debris count in treatment area: (D >1', L 6-20 / D >1', L >20) 7. Large woody debris count in treatment area: (D >1', L 6-20 / D >1', L >20) 9. Stream channel problems within the treatment area: AGG, BRD, FLO, GRC, HDC, NAR, SCU, STT, WID, NON, OTH 10. If an objective, did the treatment lead to the targeted channel conditions? a. Conditions: AGG, FPD, GRC, INC, NAR, SIN, STB, TOG, WID, OTH 11. If an objective, was active channel width reduced within the treatment area? 12. If an objective, was active channel width reduced within the treatment area: 13. Did the residual water depth in treatment area: (ft) 14. 1st/2nd dominant substrate: SLC, SND, GRV, COB, BOL, BED, OTH 15. Was there sediment deposition at the feature? a. Did sediment deposition at the feature? a. Locations: Ore, SLS, SND, GNZ, CNB, BOL, BED, OTH 16. Were there any unintended effects on the stream channel? 17. Is there bank erosion or instability in the vicinity of the treatment area? a. Locations: UPS, DNS, WIM and LBK, RK b. Apparent causes: BAR, CNR, EMG, GRZ, HYD, RDS, UND, USG, OTH	etur	4. Are problems with the feature visible?		
S 5. Is the feature still in its original location, position & orientation? Image: Solution of the state o	tru	a. Type: ANC, BBB, CRF, MAT, SHF, STR, SWA, UND, UNS, WSH, OTH		
6. If an objective, was instream shelter and habitat improved? ////////////////////////////////////	S	5. Is the feature still in its original location, position & orientation?		
9900000000000000000000000000000000000		6. If an objective, was instream shelter and habitat improved?		
8. If an objective, did the feature increase LWD count in the treatment area? a. LWD recruitment methods: ANC, EXC, EXH, INT, RPR, UNA, OTH 9. Stream channel problems within the treatment area: AGG, BRD, FLO, GRC, HDC, INC, NAR, SCU, STT, WD, NON, OTH 10. If an objective, did the treatment lead to the targeted channel conditions? a. Conditions: AGG, FPD, GRC, INC, MAR, SIN, STB, TOG, WID, OTH 11. If an objective, was active channel width reduced within the treatment area? a. Average active channel width reduced within the treatment area? 11. If an objective, was active channel width reduced within the treatment area? 11. If an objective, was the frequency or length of dry stream decreased?* 12. If an objective, was the frequency or length of dry stream decreased?* 13. Did the residual maximum water depth in the treatment area increase? 14. 1st/2nd dominant substrate: SLC, SND, GRV, COB, BOL, BED, OTH 17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	eter	7. Large woody debris count in treatment area: (D>1', L 6-20' / D>1', L>20')	/ /	/
a. LWD recruitment methods: ANC, EXC, EXH, INT, RPR, UNA, OTH 9. Stream channel problems within the treatment area: AGG, BRD, FLO, GRC, HDC, INC, NAR, SCU, STT, WID, NON, OTH 10. If an objective, did the treatment lead to the targeted channel conditions? a. Conditions: AGG, FPD, GRC, INC, NAR, SIN, STB, TOG, WID, OTH 11. If an objective, was active channel width reduced within the treatment area? a. Average active channel width in the treatment area: (ft) 12. If an objective, was the frequency or length of dry stream decreased?* 13. Did the residual maximum water depth in the treatment area: (ft) 14. 1st?2nd dominant substrate: SLC, SND, GRV, COB, BOL, BED, OTH 15. Was there sediment deposition at the feature? a. Did sediment deposition at the feature narrow the stream channel? b. Did sediment deposition at the feature fill in a side channel? 16. Were there any unintended effects on the stream channel? 17. Is there bank crosion or instability in the vicinity of the treatment area? a. Locations: UPS, DNS, WIN and LBK, RBK b. Apparent causes: BAR, CNR, EMG, GRZ, HYD, RDS, UND, USG, OTH 18. If an objective, was streambank instability and/or bank erosion reduced? a. Length of streambank stabilized: (ft) b. Areage bank stabilized: (ft) b. Areage bank and bank tras still unstable: (ft) b. Areage bank angle at treatment	Shl	8. If an objective, did the feature increase LWD count in the treatment area?		
9. Stream channel problems within the treatment area: AGG, BRD, FLO, GRC, HDC, NC, NAR, SCU, STT, WID, NON, OTH III. If an objective, did the treatment lead to the targeted channel conditions? a. Conditions: AGG, FPD, GRC, INC, NAR, SIN, STB, TOG, WID, OTH III. If an objective, was active channel width reduced within the treatment area? a. Average active channel width reduced within the treatment area? III. If an objective, was active channel width reduced within the treatment area? a. Average active channel width in the treatment area: (ft) III. If an objective, was the frequency or length of dry stream decreased?* 13. Did the residual maximum water depth in the treatment area: (ft) III. If an objective, was the frequency or length of dry stream decreased?* 14. Ist/2nd dominant substrate: SLC, SND, GRV, COB, BOL, BED, OTH / / / / 15. Was there sediment deposition at the feature? III. If a objective, was stream deconstrome the stream channel? b. Did sediment deposition at the feature fill in a side channel? III. If an objective, was streambank instability in the vicinity of the treatment area? a. Locations: UPS, DNS, WIN and LBK, RBK III. If an objective, was streambank instability and/or bank erosion reduced? a. Length of streambank stabilized: (ft) III. If an objective, was streambank instability and/or bank erosion reduced? a. Length of streambank stabilized: (ft) III. If an objective, did the feature reduce the bank angle? III. If an objective, di		a. LWD recruitment methods: ANC, EXC, EXH, INT, RPR, UNA, OTH		
HDC, INC, NAR, SCU, STT, WID, NON, OTH 10. If an objective, did the treatment lead to the targeted channel conditions? a. Conditions: AGG, FPD, GRC, INC, NAR, SIN, STB, TOG, WID, OTH 11. If an objective, was active channel width reduced within the treatment area? a. Average active channel width in the treatment area: (ft) 11. If an objective, was the frequency or length of dry stream decreased?* 13. Did the residual maximum water depth in the treatment area: (ft) 12. If an objective, was the frequency or length of dry stream decreased?* 14. Ist2nd dominant substrate: SLC, SND, GRV, COB, BOL, BED, OTH / 15. Was there sediment deposition at the feature? 12. If an objective, was the frequency or length of the stream channel? b. Did sediment deposition at the feature narrow the stream channel? 14. Ist2nd dominant substrate: SLC, SND, GRV, COB, BOL, BED, OTH 16. Were there any unintended effects on the stream channel? 14. Istere bank erosion or instability in the vicinity of the treatment area? a. Locations: UPS, DNS, WIN and LBK, RBK 14. Istere bank erosion or instability and/or bank erosion reduced? a. Length of streambank instability and/or bank erosion reduced? 14. Ist for treated bank that is still unstable: (ft) b. Apparent causes: BAR, CNR, EMG, GRZ, HYD, RDS, UND, USG, OTH 15. If an objective, did the feature reduce the bank angle? 19. Average bank angle at treatment site: (degrees) 14. Isteffeature nereed schelice; (ft) <td></td> <td>9. Stream channel problems within the treatment area: AGG, BRD, FLO, GRC,</td> <td></td> <td></td>		9. Stream channel problems within the treatment area: AGG, BRD, FLO, GRC,		
10. If an objective, did the treatment lead to the targeted channel conditions?		HDC, INC, NAR, SCU, STT, WID, NON, OTH		
a. Conditions: AGG, FPD, GRC, INC, NAR, SIN, STB, TOG, WID, OTH II. If an objective, was active channel width reduced within the treatment area? a. Average active channel width in the treatment area: (ft) II. If an objective, was the frequency or length of dry stream decreased?* 13. Did the residual maximum water depth in the treatment area: (ft) II. If an objective, was the frequency or length of dry stream decreased?* 13. Did the residual maximum water depth in the treatment area: increase? II. If an objective, was the frequency or length of dry stream decreased?* 14. Ist/2nd dominant substrate: SLC, SND, GRV, COB, BOL, BED, OTH / / / 14. Ist/2nd dominant substrate: SLC, SND, GRV, COB, BOL, BED, OTH / / / 15. Was there sediment deposition at the feature narrow the stream channel? II. If an objective, was stream channel? 16. Were there any unintended effects on the stream channel? II. Is there bank crossion or instability in the vicinity of the treatment area? 17. Is there bank erosion or instability in the vicinity of the treatment area? II. Is an objective, was streambank instability and/or bank erosion reduced? 18. If an objective, was streambank instability and/or bank erosion reduced? II. Length of treated bank that is still unstable: (ft) 19. Average bank angle at treatment site: (degrees) II. Is the feature create ≤ the targeted bank angle? 20. If an objective, did the feature reduce the bank angle? II. Is the feature ereate ≤ th		10. If an objective, did the treatment lead to the targeted channel conditions?		
11. If an objective, was active channel width reduced within the treatment area? a. Average active channel width in the treatment area: (ft) 12. If an objective, was the frequency or length of dry stream decreased?* 13. Did the residual maximum water depth in the treatment area increase? a. Maximum residual water depth in the treatment area: (ft) 14. Ist/2nd dominant substrate: SLC, SND, GRV, COB, BOL, BED, OTH 7 7 7 15. Was there sediment deposition at the feature? a. Did sediment deposition at the feature fill in a side channel? b. Did sediment deposition at the feature fill in a side channel? 16. Were there any unintended effects on the stream channel? If Y, comment. 17. Is there bank erosion or instability in the vicinity of the treatment area? a. Locations: UPS, DNS, WIN and LBK, RBK b. Apparent causes: BAR, CNR, EMG, GRZ, HYD, RDS, UND, USG, OTH 18. If an objective, was streambank instability and/or bank erosion reduced? a. Length of streambank stabilized: (ft) b. Length of treated bank that is still unstable: (ft) 19. Average bank angle at treatment site: (degrees) 20. If an objective, did the feature reduce the bank angle? a. Did the feature create ≤ the targeted bank angle? 21. Were there any unintended effects on the banks? I		a. Conditions: AGG, FPD, GRC, INC, NAR, SIN, STB, TOG, WID, OTH		
a. Average active channel width in the treatment area: (ft) 12. If an objective, was the frequency or length of dry stream decreased?* 13. Did the residual maximum water depth in the treatment area increase? a. Maximum residual water depth in treatment area: (ft) 14. 1st/2nd dominant substrate: SLC, SND, GRV, COB, BOL, BED, OTH 15. Was there sediment deposition at the feature? a. Did sediment deposition at the feature narrow the stream channel? b. Did sediment deposition at the feature narrow the stream channel? 16. Were there any unintended effects on the stream channel? 17. Is there bank erosion or instability in the vicinity of the treatment area? a. Locations: UPS, DNS, WIN and LBK, RBK b. Apparent causes: BAR, CNR, EMG, GRZ, HYD, RDS, UND, USG, OTH 18. If an objective, was streambank instability and/or bank erosion reduced? a. Length of streambank stabilized: (ft) b. Length of treated bank that is still unstable: (ft) 19. Average bank angle at treatment stie: (degrees) 20. If an objective, did the feature reduce the bank angle? 21. Were there any unintended effects on the banks? If Y, comment. 22. Feature Effectiveness Rating: Excl, Good, Fair, Poor, Fail 23. Does this feature need: DEC, ENH, MNT, REP, NON, OTH 24. Are additional restoration treatments recommended at this location?		11. If an objective, was active channel width reduced within the treatment area?		
12. If an objective, was the frequency or length of dry stream decreased?*		a. Average active channel width in the treatment area: (ft)		
Image: Provide the section of the	nne	12. If an objective, was the frequency or length of dry stream decreased?*		
a. Maximum residual water depth in treatment area: (ft) ////////////////////////////////////	Cha	13. Did the residual maximum water depth in the treatment area increase?		
14. 1st/2nd dominant substrate: SLC, SND, GRV, COB, BOL, BED, OTH / / / 15. Was there sediment deposition at the feature?	Ĭ	a. Maximum residual water depth in treatment area: (ft)		
15. Was there sediment deposition at the feature?		14. 1st/2nd dominant substrate: SLC, SND, GRV, COB, BOL, BED, OTH	/ /	/
a. Did sediment deposition at the feature narrow the stream channel?		15. Was there sediment deposition at the feature?		
b. Did sediment deposition at the feature fill in a side channel? Image: constant of the stream channel? 16. Were there any unintended effects on the stream channel? If Y, comment. Image: constant of the stream channel? 17. Is there bank erosion or instability in the vicinity of the treatment area? Image: constant of the stream channel? a. Locations: UPS, DNS, WIN and LBK, RBK Image: constant of the stream channel? b. Apparent causes: BAR, CNR, EMG, GRZ, HYD, RDS, UND, USG, OTH Image: constant of the stream channel? 18. If an objective, was streambank instability and/or bank erosion reduced? Image: constant of the stream channel? a. Length of streambank stabilized: (ft) Image: constant of the stabilized of the stability of the feature create ≤ the targeted bank angle? Image: constant of the stability of the stabi		a. Did sediment deposition at the feature narrow the stream channel?		
16. Were there any unintended effects on the stream channel? If Y, comment. Image: stream of the stream channel? If Y, comment. 17. Is there bank erosion or instability in the vicinity of the treatment area? Image: stream of the		b. Did sediment deposition at the feature fill in a side channel?		
17. Is there bank erosion or instability in the vicinity of the treatment area?		16. Were there any unintended effects on the stream channel? If Y, comment.		
a. Locations: UPS, DNS, WIN and LBK, RBK		17. Is there bank erosion or instability in the vicinity of the treatment area?		
B Apparent causes: BAR, CNR, EMG, GRZ, HYD, RDS, UND, USG, OTH Image: Constraint of the second constraint of t		a. Locations: UPS, DNS, WIN and LBK, RBK		
18. If an objective, was streambank instability and/or bank erosion reduced? Image: streambank stabilized: (ft) a. Length of streambank stabilized: (ft) Image: streambank stabilized: (ft) b. Length of treated bank that is still unstable: (ft) Image: streambank stabilized: (ft) 19. Average bank angle at treatment site: (degrees) Image: streambank stabilized: (ft) 20. If an objective, did the feature reduce the bank angle? Image: streambank angle 20. If an objective, did the feature reduce the bank angle? Image: streambank angle 21. Were there any unintended effects on the banks? If Y, comment. Image: streambank angle 22. Feature Effectiveness Rating: Excl, Good, Fair, Poor, Fail Image: streambank angle 23. Does this feature need: DEC, ENH, MNT, REP, NON, OTH Image: streambank angle 24. Are additional restoration treatments recommended at this location? Image: streambank angle streambank Image: streambank angle Image: streambank angle 30. Does this feature need: DEC, ENH, MNT, REP, NON, OTH Image: streambank angle Image: streambank angle streambank Image: streambank angle Image: streambank angle Image: streambank angle 31. Were there any unintended in the streambank angle Image: streambank angle Image: streambank angle 32. Does this fea		b. Apparent causes: BAR, CNR, EMG, GRZ, HYD, RDS, UND, USG, OTH		
a. Length of streambank stabilized: (ft) b. Length of treated bank that is still unstable: (ft) 19. Average bank angle at treatment site: (degrees) 20. If an objective, did the feature reduce the bank angle? a. Did the feature create ≤ the targeted bank angle? 21. Were there any unintended effects on the banks? If Y, comment. 22. Feature Effectiveness Rating: Excl, Good, Fair, Poor, Fail 23. Does this feature need: DEC, ENH, MNT, REP, NON, OTH 24. Are additional restoration treatments recommended at this location?	ıks	18. If an objective, was streambank instability and/or bank erosion reduced?		
b. Length of treated bank that is still unstable: (ft) Image: still unstable is still unstable: (ft) 19. Average bank angle at treatment site: (degrees) Image: still unstable is still uns	ıbaı	a. Length of streambank stabilized: (ft)		
Image: Second State Sta	ean	b. Length of treated bank that is still unstable: (ft)		
20. If an objective, did the feature reduce the bank angle? Image: Constraint of the feature create in the second sec	Str	19. Average bank angle at treatment site: (degrees)		
a. Did the feature create ≤ the targeted bank angle?		20. If an objective, did the feature reduce the bank angle?		
21. Were there any unintended effects on the banks? If Y, comment. 21. Were there any unintended effects on the banks? If Y, comment. 22. Feature Effectiveness Rating: Excl, Good, Fair, Poor, Fail 23. Does this feature need: DEC, ENH, MNT, REP, NON, OTH 24. Are additional restoration treatments recommended at this location? 24. Are additional restoration treatments recommended at this location?		a. Did the feature create \leq the targeted bank angle?		
1 22. Feature Effectiveness Rating: Excl, Good, Fair, Poor, Fail Image: Construction of the sector of the sec		21. Were there any unintended effects on the banks? If Y, comment.		
23. Does this feature need: DEC, ENH, MNT, REP, NON, OTH	aa	22. Feature Effectiveness Rating: Excl, Good, Fair, Poor, Fail		
24. Are additional restoration treatments recommended at this location? stress	atin	23. Does this feature need: DEC, ENH, MNT, REP, NON, OTH		
Comments	ä	24. Are additional restoration treatments recommended at this location?		
Comme	nts			
	nme			
	Con			

ABA	Artificial barrier	CRF	Cable/rebar failure
ACQ	Habitat/land acquisition	CRL	Controlled release
AFD	Armored fill - dry	CRN	Crowned
AGG	Aggradation	CRS	Crushed
ALN	Alignment	CSP	Chemical spray
ANC	Anchoring/anchored placement	CUL	Culvert
ANC	Multiple engles	CUT	Cut healt
ANG	Ammogah		Cut ballk
APP	Approach Armonad fill wat		Dobris horrior
AFW	Armored IIII - wet	DBE	Debris flam/tament
	Arinoning	DBF	Debris
AKZ	Anzona Crossing	DDK	Decommissioning
DAU	Bottomiess arch curvent	DEC	CA Dant of Fish & Come
DAK	Bare area devoid of vegetation	DLG	CA Dept. of Fish & Game
BBB	Buried by bedload	DIT	Ditch
BED	Bedrock	DIV	Diversion of flow
BFC	Bankfull channel	DNS	Downstream
BIO	Bioengineering	DOX	Dissolved oxygen
	(live vegetation)		
BLD	Bank building	DPD	Diversion
	(LU-Building)		prevention ditch
BNK	Bank	DRC	Ditch relief culverts
BOL	Boulder	DRT	Dirt
BRD	Channel braiding	DRY	Dry channel
BRI	Bridge	DSP	Downspouts
BRM	Berm	DVP	Diversion potential
BRN	Burn/burning	DWR	Dept of Water Resources
BRW	Barbed wire	EAS	Conservation Easement
BOR	Bubble curtain	EFL	Earthflows and large, slow moving landslides
BUR	Buried or "keyed in"	ELC	Electric
CAN	Canal	EMG	Emergent groundwater
CBL	Cabled	ENH	Enhancement
CCV	Concave	EOC	Emergency overflow
			culvert (pipe)
CDP	Critical dip	ERO	Erosion
CGA	Culvert gravel absent	EXC	Excavated/excavation
CGR	Controlled grazing	EXH	Exhumed/unburied
СНВ	Channel bed	FAB	Fabric
CHL	Chain link	FIL	Fill material
CHN	Channel/channel bed	FJH	Fish jump height
CHS	Chiseled	FLA	Flared
CNR	Concentrated runoff	FLD	On floodplain
СОВ	Cobble	FLO	Flow obstructions
СОМ	Compacting	FLS	Floating segments
СОМ	Complete barrier	FLT	Flatwater or flat Surface
CON	Concrete	FPD	Floodplain deposition
COR	Corrosion	FRM	Farming
CRD	Cross road drains	FSL	Fill slope

CDFG CRMEP 08/05/08 Draft Qualitative Monitoring Code List 2008

FUL	Full recontour	NNS	Non-native species
GRA	Grasses	NRG	Non-road gullying
GRC	Grade control	NRL	Non-road (hillslope)
~			debris landslides
GRV	Gravel	NRP	No resting pool
GRZ	Grazing/Grazing Animal	NTM	Native mulching
GUL	Gully	NTR	Native rock
HAN	Hand Crew	NTS	Native species
HDC	Headcut	NUM	Nutrient movement
HIG	High	NUT	Nutrients
HRB	Herbaceous	OFR	Off-site rock
HTW	High tensile wire	OTH	Other
HUM	Humboldt Crossing	OIL	Outlet
HYD	Hydrologic processes	OUT	Outslope
IMS	Impassable structures	OVF	Overland flow
INC	Incision	OVS	Oversteepened
INL	Inlet	OVT	Overtopped
INS	Inslope	PAR	Partial barrier or
			recontour
INT	Interception	PAV	Paved
IRS	Irrigation system	PCA	Poor channel alignment
IST	Instability/unstable	PIP	Piping
JUV	Juvenile	PLA	Plastic
LAN	Landing failures	PLG	Plugged
LBK	Left bank	PLN	Planting
LDA	Large debris accumulation	РРТ	Poor profile transition
LDS	Landslide	POO	Pool
LEA	Habitat/land lease	PRL	Parallel to bank/ floodplain
LNG	Length	PRM	Perched material
LOW	Low	PRP	Perpendicular to
IWD	Large woody debris	PRK	Dank/Hoodplain Right bank
MAC	Machine/heavy	RCP	Road construction
MAC	Equipment	Kei	practices
MAT	Materials failure	RDS	Roads/Road surface
MDC	Mid-channel	REB	Rebar
MEC	Mechanical failure	REP	Repair
MED	Medium	RIF	Riffle
MIG	Lateral migration	RIL	Rilling
MIT	Mitered culvert inlet	RIP	Ripping
MNT	Maintenance	RLD	Rolling dips
MOD	Moderate	RMP	DFG Riparian Area Management Plan
			Agreement
MTL	Metal	ROC	Rock
MUL	Multiple angles	RPR	Riparian recruitment
NAR	Narrowing	RRG	Other road-related
NAT	Natural causes	RTW	Root wads
NBA	Natural barrier	SBE	Streambank erosion
NCA	Natural channel	SBL	Streambank landslides
	adjustment		

SCU	Side cutting	TEM	Temporal barrier
SCW	Stream crossing	TIF	or seasonal exclusion
SCW	washouts (gullies)	TIE	Tied
SDC	Side-channel	ТМВ	Timber
SDS	Side slope or slope	ТМР	Temperature
SBM	Substrate movement	TNC	Tension crack
SCR	Scar or scarp	TOG	To grade
SEE	Seeding	тот	Total barrier
SET	Settling basins	TRE	Tree
SFE	Surface erosion	TRW	Time release water
			packs
SHF	Shifting	TUR	Turbidity
SHR	Shrub	UAF	Unarmored fill Crossing
SIN	Sinuosity	UBE	Undercutting by
			Excavation
SIZ	Size	UCB	Undercut banks
CT A		LOD	as habitat
SLA	Slope angle	UCK	Under crossing
SLC	Silt/clay	UCI	Undercut toe
SLF	Silt tence	UEF	Unexcavated fill
SLT	Slotted	UNA	Unanchored
SMP	Slump	UND	Undercut/
	Shump		Undermined
SND	Sand	UNS	Undersized
SOR	Square	UPL	Upland
	- 1	012	- F
SOP	Soil pedestals	UPS	Upstream
SPN	Spanning	USG	Unstable
			soils/geology
SPS	Suspended segments	VEG	Vegetation
STA	Stable angle	VOI	Void
STB	Stability	WDG	Wedged
STG	Stream gauge	WGW	Wingwalls
STK	Staked	WID	Width/Widening
STM	Straw mulching	WIN	Within
STR	Stranding	WOO	Wood, wooden
STT	Straight/	WSH	Washout
	straightening		
SUB	Substrate	WTB	Water bars
SWA	Stranded out of	WTD	Water depth
	water (vertically)		-
SWD	Small woody Debris	WTR	Water
TCU	Through cut	WTV	Water velocity

Sampling Locations

All streambank stabilization structures installed along the Rutherford Reach, between stream channel stations 0 and 24,900, will be assessed during the Annual Stream Reach Survey.

Phase 1: Reaches 1 and 2

In 2009, streambank stabilization structures are anticipated to be installed in discontinuous subreaches in Phase1: Reaches 1 and 2. Phase 1 spans from river station 18,600 to 24,900.

Phase 2: Reach 3

Phase 2 spans from river station XXXX to 18,600.

Sampling Schedule

The Annual Stream Reach Survey will be conducted each spring. Streambank stabilizations structures will also be examined for damage after large flood events (>5year recurrence interval), and upon notification by a landowner that the structure has failed.

Phase 1: Reaches 1 and 2

Construction of Phase 1: Reaches 1 and 2 is scheduled for spring 2009, and the post-construction annual stream survey will commence in spring 2010.

Phase 2: Reach 3

It is anticipated that Phase 2: Reach 3 pre-project baseline surveys will be conducted in spring 2009, and that construction will occur in spring 2010, and the post-construction annual stream survey will commence in spring 2011.

Protocol References and Data Forms

Collins, B. (2008)

Coastal Restoration Monitoring and Evaluation Program Qualitative Monitoring Forms. California Department of Fish and Game, Fort Bragg, California.

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/

(Will be incorporated into Flosi et al. CDFG Stream Restoration Manual Chapter 8)

Channel Bank Reconstruction and Bank Stabilization (CB)

Pre-Treatment Form http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2 008%20Effectiveness_Monitoring/Checklists/2a%20CB_Pre_Chan nelBankReconstruction_2008.pdf

Implementation Form <u>http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2</u> <u>008%20Implementation_Monitoring/Checklists/2%20CB_Imp_Cha</u> nnelBankReconstruction_2008.pdf

Post-Treatment Form http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2 008%20Effectiveness_Monitoring/Checklists/2b%20CB_Post_Cha nnelBankReconstruction_2008.pdf

Flosi, G., S. Downie, J. Hopelain, M. Bird, R. Coey, and B. Collins / CDFG (1998)
California Salmonid Stream Habitat Restoration Manual, Third Edition. Sacramento, California, California Department of Fish and Game, Inland Fisheries Division. http://www.dfg.ca.gov/nafwb/pubs/1998/manual3.pdf

Harris, R.R., S.D. Kocher, J.M. Gerstein and C. Olson. (2005) Monitoring the Effectiveness of Riparian Vegetation Restoration. University of California, Center for Forestry, Berkeley, CA. 33 pp. <u>http://www.cnr.berkeley.edu/forestry/comp_proj/DFG/Monitoring</u> <u>%20the%20Effectiven</u> ess%20of%20Riparian%20Vegetation%20Restorat.pdf

Aquatic Habitat Structure Status Assessment

Objectives

The objective for assessing the status of installed aquatic habitat structures is to determine whether they require maintenance, and whether they are functioning to improve aquatic habitat quality and complexity.

Methods

The status of installed streambank aquatic habitat structures will be assessed during the Annual Stream Reach Survey per the protocol outlined in the *California Salmonid Stream Habitat Restoration Manual, Part VIII, Project Evaluation and Monitoring* (Flosi et al / CDFG, 1998). To record aquatic habitat structure data use the *Stream habitat Enhancement Project Evaluation Individual Structure or Site Form* located on page VIII-17. The structure objective code for rearing and spawning stream channel improvements is "3". The form allows for the recording of the location, condition, and recommendations for repairing the structure. Use stream stationing for the reference point. Add a GPS waypoint number. While recording the status of restoration structures, simultaneously record data on associated habitat type.

Supplement the Flosi et al /CDFG form with the IN- Instream Habitat and Bank Restoration Post-Treatment Evaluation Form by Collins (2008), which will be incorporated in to Flosi et al / CDFG (1998) in 2009. Use the codes from Collins (2008) to fill out the forms.

Instream Habitat and Bank Restoration (IN)

Instream Habitat and Bank Restoration – Post-Treatment Form Instructions

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2 008%20Effectiveness_Monitoring/Instructions/1b%20IN_Post_Che cklist_Instructions_2008.pdf

Post-Treatment Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2 008%20Effectiveness_Monitoring/Checklists/1b%20IN_Post_Instr eamHab_2008.pdf

Qualitative Monitoring Feature Codes

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2 008%20Implementation_Monitoring/Supporting_Documents/Check list_Letter_Codes_2008.pdf

Treatment Types

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2 008%20Implementation_Monitoring/Supporting_Documents/Treat ment_Type_Codes_2008.pdf

Photograph and log the photo description of instream structures requiring maintenance or of interest on the Photo Data Sheet.

STREAM HABITAT ENHANCEMENT PROJECT EVALUATION INDIVIDUAL STRUCTURE OR SITE FORM

STREAM:		DRAINAGE:		PAGE	of
DATE:/ ST	REAM PNAME:			PNAME CODE:	
EVALUATOR(s) :			CONTRACT	NO.:FY:	_/
REFERENCE POINT:			LAT: DECIMAL DEGREES)	LONG: (DECIMAL DEGREE:	8)
FEET FROM REFERENCE PO	INT:	UP DN		CHANNEL TYPE:	
RESTORATION OBJECTIVE	1 2 3 (circle	one)	TYPE OF STRU	CTURE:	
HOW WELL IS STRUCTURE	MEETING HABITAT	f OBJECTIVE ? (cir	cle number)		
1 (EXCELLENT) COMMENTS:	2 (GOOD)	_ 3 (FAIR)	4 (POOR)	5 (NO VALUE)	
CONDITION OF STRUCTURE	- consider structural	integrity only (circle	e number):		
1 (EXCELLENT) 2	t (GOOD)	3 (FAIR)	_ 4 (POOR)	5 (NOT VISIBLE)	
COMMENTS:					
1. ANCHOR FAILURE 2. CABLE FAILURE 3. CHANNEL SHIFT 4. BOULDER/LOG SHIFT 5. UNDERMINED 6. BURIED BY BEDLOAD 7. UNDERBUILT 7. COMMENTS:		8. LOGS/ 9. BANK 10. CREAT 11. POOR 1 12. POOR 1 13. EX-FE 14. OTHER	BOULDERS STRAN EROSION AT SITE ED SEDIMENT TR DESIGN, PLACEMENT, NCE FAILURE,	IDED OUT OF CHANNEL AND/OR DOWNSTREAM AP, ,	1, 1,
Repair recommended: Yes No	Enhancement to in	mprove cover or effe	ctiveness recommend	ded: Yes No	
HABITAT TYPE (associated with	th structure)		BANKFU	JLL STREAM WIDTH	FT
MAXIMUM POOL DEPTH	FT.		DEPTH OF	POOL TAIL CREST	FT
SHELTER COMPLEXITY: 0	1 2 3 x SH	ELTER % COVER:		SHELTER RATING:	
OBSERVED SALMONIDS NO COMMENTS:	0.: 0, 1	, 2+	_, ADULTS	, REDDS	
REVEGETATION: RIPARIAN	UPSLOPE	BOTH	(Photo required fo	or reveg.) DESCRIBE DEN	NSITY:
PHOTO NO. PRINT: ROLI	L FRAME	, s	SLIDE: ROLL	FRAME	
COMMENTS:					

IN - INSTREAM HABITAT & BANK RESTORATION

POST-TREATMENT

Grant #: Project title:

Dat	e : Evaluator: Site ID:		page	of
	Project Feature Number			
	Feature Type Code			
	1. Length of instream habitat improved: (ft)			
~	2. Length of streambank stabilized: (ft)			
tur€	3. Structural condition: Excl, Good, Fair, Poor, Fail			
Fea	4. Are problems with the feature visible?			
	a. Types: ANC, BBB, CRF, MAT, SHF, STR, SWA, UND, UNS, WSH, OTH			
	5. Is the feature still in its original location, position & orientation?			
	6. Current level II habitat type: FLT, POO, RIF, DRY, OTH			
	7. Maximum residual water depth in treatment area: (ft)			
t I	a. Maximum residual depth associated with the structure: (ft)			
oita	8. If an objective, did the feature create the targeted instream habitat type?			
Hał	9. Were there any unintended effects on the habitat type? If Y, comment.			
	10. If an objective, did the feature increase max. water depth in the treatment area?			
	a. Did the feature achieve the targeted maximum residual depth?			
	11. Were there any unintended effects on the water depth? If Y, comment.			
	12. Instream shelter value in the treatment area: 0, 1, 2, 3			
	13. Percent of treatment area covered by shelter: (%)			
	14. 1st/2nd dominant: BED, BOL, BUB, LWD, RTW, SWD, UCB, VEG, OTH	/	/	/
lter	15. If an objective, did the feature increase instream shelter rating?			
She	a. Did the feature achieve the targeted minimum shelter rating?			
	16. Large woody debris count in treatment area: (D >1', L 6-20' / D >1', L >20')	/	/	/
	17. If an objective, did the feature increase LWD count in the treatment area?			
	a. LWD recruitment methods: ANC, EXC, EXH, INT, RPR, UNA, OTH			
ate.	18. 1st/2nd dominant substrate: SLC, SND, GRV, COB, BOL, BED, OTH	/	/	/
lbsti	19. If an objective, did the feature achieve the targeted substrate composition?			
Su	20. Were there any unintended effects on substrate composition? If Y, comment.			
	21. Current stream channel problems: AGG, BRD, FLO, GRC, HDC, INC,			
nel	NAR, SCU, STT, WID, NON, OTH			
han	22. If an objective, did the feature lead to the targeted channel conditions?			
C	a. Conditions: AGG, FPD, GRC, INC, NAR, SIN, STB, TOG, WID, OTH			
	23. Were there any unintended effects on the stream channel? If Y, comment.			
	24. Is there bank erosion or instability in the vicinity of the treatment area?			
	a. Locations: UPS, DNS, WIN and LBK, RBK			
~	b. Apparent causes: BAR, CNR, EMG, GRZ, HYD, UND, USG, OTH			
ank	25. If an objective, was streambank instability and/or bank erosion reduced?			
Ä	26. Were there any unintended effects on the streambanks? If Y, comment.			
	27. If an objective, did the feature reduce the streambank angle?			
	a. Bank angle in treatment area: (degrees)			
	b. Did the feature create the targeted bank angle?			
ng	28. Feature Effectiveness Rating: Excl, Good, Fair, Poor, Fail			
Rat	29. Does this feature need: DEC, ENH, MNT, REP, NON, OTH			
	30. Are additional restoration treatments recommended at this location?			
	□ Comment on back, Y=Yes, N=No, P=Partially, D=Don't know, A=Not Applicable.	CRMEP 08/05/0	8 Draft	

Sampling Locations

All aquatic habitat structures installed along the Rutherford Reach, between stream channel stations 0 and 24,900, will be assessed during the Annual Stream Reach Survey.

Phase 1: Reaches 1 and 2

In 2009, aquatic habitat enhancement structures are anticipated to be installed in discontinuous subreaches in Phase1: Reaches 1 and 2. Phase 1 spans from river station 18,600 to 24,900.

Sampling Schedule

The Annual Stream Reach Survey will be conducted each spring. Aquatic habitat enhancement structures will also be examined for damage after large flood events (>5year recurrence interval), and upon notification by a landowner that the structure has failed.

Phase 1: Reaches 1 and 2

It is anticipated that Phase 1: Reaches 1 and 2 will be constructed by spring 2009, and the post-construction annual stream survey will commence in spring 2010.

Protocol References and Data Forms

Collins, B. (2008) Coastal Restoration Monitoring and Evaluation Program Qualitative Monitoring Forms. California Department of Fish and Game, Fort Bragg, California. <u>http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/</u> (Will be incorporated into Flosi et al. CDFG Stream Restoration Manual Chapter 8) Elasi C. S. Dawnia, L. Handain, M. Bird, B. Casu, and B. Calling/

Flosi, G., S. Downie, J. Hopelain, M. Bird, R. Coey, and B. Collins / CDFG (1998)
California Salmonid Stream Habitat Restoration Manual, Third Edition. Sacramento, California, California Department of Fish and Game, Inland Fisheries Division. <u>http://www.dfg.ca.gov/nafwb/pubs/1998/manual3.pdf</u>

Harris, R.R., S.D. Kocher, J.M. Gerstein and C. Olson. (2005) Monitoring the Effectiveness of Riparian Vegetation Restoration. University of California, Center for Forestry, Berkeley, CA. 33 pp. <u>http://www.cnr.berkeley.edu/forestry/comp_proj/DFG/Monitoring</u> <u>%20the%20Effectiven</u> <u>ess%20of%20Riparian%20Vegetation%20Restorat.pdf</u>

Photodocumentation of Annual Changes

Objectives

The objective of photodocumentation is to provide a visual record to augment data collected in the field.

<u>Methods</u>

Photodocument eroding stream banks, areas requiring weed control, LWD Accumulations and Jams contributing to stream erosion, and bank stabilization and aquatic habitat enhancement structures requiring maintenance. Record the GPS point, stream station, photographer location (in-channel, at a monument pin or tag), and direction of photograph on the Photo Form. Where directionality in relation to the stream is not obvious, record the compass bearing of the direction in which the photo is taken. Record the subject of the photograph.

Sampling Locations

Photodocumentation of problem sites will occur along the Rutherford Reach, between stream channel stations 0 and 24,900, during the Annual Stream Reach Survey.

Phase 1: Reaches 1 and 2

Project construction of Phase1: Reaches 1 and 2, which spans from river station 18,600 to 24,900, is expected to be completed in 2009.

Sampling Schedule

The Annual Stream Reach Survey will be conducted each spring. Photodocumentation will occur concurrently with assessment of eroding stream banks, areas requiring weed control, LWD, and bank stabilization and aquatic habitat enhancement structures. These features will also be examined for damage after large flood events (>5year recurrence interval), and upon notification by a landowner of a bank erosion problem.

Phase 1: Reaches 1 and 2

It is anticipated that Phase 1: Reaches 1 and 2 will be constructed by spring 2009, and the post-construction annual stream reach survey will commence in spring 2010.

Start Station		Stream Na	me:		Date:	Surveyors:	
			Photod	documentation			
GPS PT	FROM +US/-DS	TO +US/-DS	Photo No.	Photographer Location, Monument Pin or Tag Number	Direction of Photo Relative to Stream	Compass Bearing	Subject / Feature / View / Notes
	(feet)	(feet)	#	LB, RB, CH, etc	US, DS, RB, LB	Degrees	

DS-Downstream US-Upstream LB-Left Bank RB-Right Bank CH-Channel TOP-Top of Bank Pin MID-Mid Bank Pin BTM – Base of Bank Pin

Protocol References and Data Forms

Gerstein, J.M. and S.D. Kocher. (2005)

Photographic Monitoring of Salmonid Habitat Restoration Projects. University of California, Center for Forestry, Berkeley, CA. 21 pp. <u>http://www.cnr.berkeley.edu/forestry/comp_proj/DFG/Photographic%20Monitoring%20 of%20Salmonid%20Habitat%20March%202005.pdf</u>

Hayes, G. et al (2008)

Napa River, Rutherford Reach, Restoration Phase 1, Reaches 1 and 2, Pre-Project Monitoring Survey, Prepared for the Napa County Resource Conservation District, December 3, 2008. 33 pp.

USDA (2005) Frazier, J.W., et al

Stream Condition Inventory Technical Guide. USDA Forest Service, Pacific Southwest Region – Ecosystem Conservation Staff. Vallejo, CA 111pp. <u>http://www.fs.fed.us/r5/publications/water_resources/sci/techguide-v5-08-2005-a.pdf</u>

Repeated Channel Transects and Local Longitudinal Profiles

Objectives

The objectives of the Repeated Channel Transect and Local Longitudinal Profile surveys are to:

- Evaluate long term changes in stream channel geometry, capacity and stability in treated and untreated river reaches.
- Evaluate long term changes in aquatic habitat quality associated with installed instream structures.

While longitudinal monitoring data will be collected for the entire reach on an annual basis during the Maintenance Survey, less frequent cross-section transects will be surveyed to measure changes in the relationship between the channel, its floodplain, and associated habitats. We are employing a Before/After Control/Impact of Treatment (BACI) approach for measuring change (Roni, P, 2005ed.). Monitoring cross sections in control and treatment reaches is an effective strategy for differentiating between natural and project-related changes, and therefore for evaluating project effectiveness.

The general strategy for surveying the transects and local longitudinal profiles is to:

- Identify treatment and control reaches to perform a BACI monitoring strategy.
- Establish, monument, and survey cross section transects along Rutherford Reach of the Napa River in these treatment and control reaches to characterize channel geometry, capacity and stability.
- Perform pebble counts at the closest riffle crest to each of these cross sections in order to characterize the channel substrate for aquatic habitat quality.
- Gather information on the distribution of riparian vegetation communities along the cross sections to assess function of riparian vegetation zones.
- Provide reference documentation for re-occupying the cross sections for future monitoring surveys.
- Photodocument the survey for re-occupation of monuments and to discern changes over time in geomorphology and vegetation.
- Survey local longitudinal thalweg profiles upstream and downstream of the cross sections as needed to assess changes in channel geomorphology and associated aquatic habitat quality.

These variables will be surveyed pre-and post-construction, and thereafter postsignificant channel forming flood event. The data from the monitoring transect surveys performed may be also used to calibrate hydraulic models.

Monitoring Parameters by Category

The parameters to be identified, mapped and assessed in the Long Term Monitoring Program are presented in Table 1 organized by monitoring category.

The following parameters will be evaluated as part of the Long Term Monitoring Plan survey:

- Channel Adjustment: Bed Deposition or Scour
- Bankfull Width to Depth Ratio: Entrenchment
- Flood Stage / High Water Mark
- Bank Stability (Rates of widening at control versus treated cross sections)
- Channel Planform Network
- Channel Substrate Size Distribution / Riffle Median Grain Size (D50) on Riffles
- Area of High Flow Refugia within Bankfull at Constructed Alcoves
- Riparian Buffer Width

Monitoring Parameter Methods

The following protocols will be used to assess the above parameters:

- Cross Section Transects
- Local Longitudinal Stream Surveys
- Grid Pebble Counts at Riffle Crests Nears Cross Section Transects
- Photodocumentation
- Air Photo Analysis

The methods for conducting these protocols are discussed individually below.

Cross Section Transects

Objectives

Cross section transect surveys will be conducted to record changes in channel morphology (e.g., bed and bank erosion), riparian vegetation buffer width, and general riparian vegetation community distribution.

Methods

District staff will coordinate cross-section transect surveys in cooperation with team partners, including the Napa County Resource Conservation District (RCD), their resource specialists, and landowner representatives.

The following parameters will be evaluated from the comparing pre- and postconstruction, and post-flood surveys:

- Channel Adjustment: Bed Deposition or Scour
- Bank Stability: Rates of Widening at Reference vs. Treatment Reaches
- Bankfull Width to Depth Ratio: Entrenchment
- Flood Stage/ High Water Mark
- Elevation Ranges of Vegetation Communities
- Riffle and Pool Habitat Location Changes
- Riparian Vegetation Buffer Width
- Riparian Vegetation Elevation Zones

Label cross sections by river station. This allows for the addition of new monitoring and monument locations without necessitating the re-ordering or renaming of existing cross sections. This labeling system also allows for quick slope gradient estimation between cross sections when NGVD thalweg and water surface elevations are known.

Tie the surveys into control points previously established for the Rutherford Restoration Project. Collect all survey data in the California State Plan Coordinate System (Zone 2, NAD 83) using the NAVD 88 vertical datum. Record riparian and aquatic habitat characteristics (e.g, plant species, percent native cover, substrate type) along each transect.

Monumentation

Rebar Pins

Monument each of the ten cross sections with a minimum of four rebar pins. Two pins should be located on the levees near the vineyard access roads, one each on the left and right banks of the Napa River. For ease of re-surveying, two pins should be located at the base of the banks on either side the channel. Wide cross sections should be monumented with additional pins midway up the channel bank. The pins located on the levees have a higher likelihood of surviving high river flow events and therefore survey re-occupation than those located next to the channel. The lower pins, however, allow for rapid re-surveying of the portion of the cross section most likely to experience measurable change in morphology. It is recommended that each cross section be monumented with a third set of pins midway up the bank, above the calculated bankfull level, to allow for a higher probability of pin re-occupation and a means for rapid re-surveying.

The pins should be labeled according to channel bank and location along the bank. All labeling assumes facing the downstream direction, which on the Napa River, is southerly.

LB	-	Leftbank
RB	-	Rightbank
TOP	-	Top of Channel Bank, Near Levee Road
MID	-	Midway up Channel Bank
BTM	-	Bottom, or Base, of Channel Bank
US	-	Upstream
DS	-	Downstream

In the field, flag the pins and label with the GPS waypoint number for the cross section as well as with the river station number. Include these placemark identifiers in the report. Cross reference previous, and preliminary stationing with new cross section labels in an identification table. It is recommended that small permanent signs displaying cross section labels by river station be installed along the levee roads for ease of re-occupying the cross sections. Additional signage might include river stations every 1000 feet. Linear distances along the levee roads will be shorter that distances between river mile stations measured along the stream channel.

Dense vegetation at each cross section may necessitate clearing of sight lines to facilitate the survey. Survey efforts should allocate approximately three to four hours per cross section for line of site vegetation clearing after re-locating the rebar monument pins. Refer to the field equipment check list for suggested clearing tools, including a ladder for surmounting dense blackberry thickets. Use of a metal detector, GPS device, monument location table, and photodocumentation is recommended for re-locating rebar pins.

Metal Tags

For ease of re-locating cross sections, metal monument tags should be mounted to stationary sites along the levee roads, such as trees and telephone poles, in the vicinity of the cross sections. The monument tags from the 2004 baseline survey are silver-colored, a few inches wide, and are stamped with identification numbers. In 2004, twenty-six tags were installed and numbered individually from 186 to 200 and from 222 to 239. Compass bearings and distances were tabulated from each of the monument tags to nearby cross sections pins, and vice versa. Photographs of the monument pins and metal tags were taken in relation to one another.

Monument Location Documentation

Geographic Positioning System (GPS) Coordinates

Record the map coordinates of the monument pins and tags with Geographic Positioning System instrument. Map the monument points on the project plans.

Relative Distances from Fixed Reference Points

For assistance in locating cross sections in the field without a GPS, or in the event that the GPS is not adequately accurate, record the linear distance from a known fixed point to the cross section endpoint monument pins.

For example, in 2004, for the cross sections downstream of the Rutherford Cross Road, the approximate linear distance, from the O-ring on top of the power box next to the large grey pump pipe, and across the dirt levee road from the wooden power pole (Monument Tag 186) near the leftbank pin of cross section RXRD+4.2DS, to the top cross section monument pins on the left bank, was measured with a tape stretched along the west edge of the left bank levee road (Pump Box +/- feet upstream / downstream). A schematic reference key was used to show the relative location of the cross sections and reference points along the river.

Cross Section Survey

Geomorphology

Survey cross section topography with a level and rod, or with a total station. Use a twenty-five foot rod to reduce the required number of survey instrument turning points. Survey points at changes in slope, substrate, and vegetation cover.

CROSS SECTION DATA FORM					ATA FORM		Page of	
Contract #:		Contract Name:				Implementation Mo/Yr:		
Site Name:					Stream/Draina	ge:		
Date:	Phase:	(Pre-treatme	ent or Post-tre	eatment) Proj	ject Feature #/Name:		XS#:	
Crew: L	evel		Stadia	n Rod	Re	corder		
T + 1 C								
Total Surv	ey Length (I	t & tenths):	() FC	Elemetica	Comments (record as	om ombio factura	mulatenta unantatio	
Station	(+) BS	ш	(-) FS	Elevation	Comments (record ge	torre of interact at	, substrate, vegetation	
					and other tac	nors of interest at	each station)	
			6					
	·							
	2 4							
				-				
	с. — — — — — — — — — — — — — — — — — — —		-					
				-				
			-					
	2							
	1		1					
			-					
			1					
			1					
			C.	i i i				
			9. 4					
· · ·							1.2	

Codes: BM = Benchmark, **HI** = Height of Instrument, **FS** = Foresight, **BS** = Backsight, **XP** = Cross Section Endpoint, **LB** = Left Bank, **RB** = Right Bank, **UPS** = Upstream, **DNS** = Downstream, **FP** = Floodplain, **LT/MT/HT** = Low/Middle/High Terrace, **LEW/REW** = Left/Right Edge Water, **BKF** = Bankfull, **PB** = Point Bar, **TP** = Turning Point, \parallel = Parallel, \perp = Perpendicular

Additional Comments:

Quantitative Effectiveness Monitoring Protocol Evaluation

56

Cross Section Substrate and Ground Cover

Indicate the distribution of substrate size classes along the cross section transects by coloring the cross section plot according to relative gravel size determined by eye during the survey.

brown	-	sand, silt, soil, fine gravel	(<8 mm median diameter)
yellow	-	medium gravel	(>8 mm median diameter)
orange	-	coarse gravel	(>16 mm median diameter)
red	-	very coarse gravel	(>32 mm median diameter)
grey	-	rip-rap	
green		roots	

Riparian Vegetation

Record vegetation changes at stations along the cross section to identify the general elevation and extent of riparian zones along the cross section. This protocol is not interchangeable with a vegetation green line, or cross section transect intercept survey, which has a more specific protocol for vegetation

monitoring purposes. Rather, this data will supplement the more specific data collected by those methods, by providing elevation establishment data for riparian species, and riparian buffer width.

Collect vegetation data along the cross section to indicate the starting and ending station elevation of general vegetation communities on and nearby the cross section in both the upstream and downstream direction. Include information such as tree lines by species, locations of woody debris, groundcover zones, and areas that are heavily rooted. In some cases, this vegetation information will help to explain the geomorphology along the cross section. For example, heavily rooted channel banks are often steeper than those that are not. Woody debris piles indicate flood level and may have served to prevent bank erosion at that part of the channel bank. Woody debris in the channel may be the cause of incision or deposition on the cross section.

Record the distribution of types of riparian vegetation, tree canopy type, and extent along each cross section surveyed. Record distances upstream and downstream to prominent trees, vegetation communities, and other attributes in reference to specific stations along each cross section. This data assists in the accurate relocating of cross sections in the event that monument pins are lost, as well as in the characterization of the distribution of riparian vegetation communities in relation to the stream channel.

Tabulate and graph the vegetation data along the cross section plot, including location and depth of large woody debris (LWD) piles. It is recommended that the vegetation, LWD, culvert and other attribute data be depicted on the cross section to the extent practicable.

Recommended Tasks

Install small permanent signs displaying cross section labels by river station along the levee roads for ease of re-occupying the cross sections. Include additional signage indicating river station every 1000 feet.

Data Management and Analysis

Continue to standardize all cross section labeling to correspond to river mile station.

Plot the riparian vegetation cover and canopy, large woody debris, culvert and other attribute data that was collected during the survey on the cross section graphs.

Create reference maps in a GIS with the following layers:

- River stationing
- Locations of previous cross sections by year surveyed
- Cross section monument pin locations
- Metal Monument tag and fixed reference point locations

- Access, ingress, egress and parking locations
- Culvert outlet locations
- Reaches of stream where long profile thalweg was surveyed
- Create an exhibit that depicts cross section graphs and zoomed in aerial photographs on the same page for each cross section.
- Long Profile and Water Surface Elevation Surveys
- Plot the long profile survey data.
- Tie the surveyed long profile reaches into each other and into the NGVD elevation coordinate system.
- Determine the slope of the entire study reach when all cross sections are tied together, and/or to NGVD elevation.
- Update the cross section plots to reflect relative and/or NGVD elevations using the long profile survey data.
- Survey in the elevation of the most recent high water mark (HWM).
- Mark and survey in the elevation of the high water mark (s).
- Mark and survey in the elevation of the high water marks and determine WSE slope and corresponding discharge for that storm event.

Access Information

Compile comprehensive list of property owner contacts for, and copies of Right of Entry forms, for future use to include in reference materials.

Create a reference map in a GIS with access, ingress, egress and parking locations.

Cross Section Transect Survey History

Baseline longitudinal and cross-section transect surveys of the Rutherford Reach were conducted in 2004, 2005 and 2007. Baseline longitudinal and cross-section transect surveys of the Rutherford Reach were conducted in 2004, 2005 and 2007.

- Phil Williams longitudinal profile
- 2004 RDRT Baseline Survey (3 cross sections in Reaches 1 and 2; 10 cross sections in total, long profile sections)
- 2005 Doble Thomas Survey
- 12/31/2005 100 Year Flood Event
- 2007 Doble Thomas Survey
- 2008 Determine new baseline and determine channel change since 100year flood event in Reaches 1 and 2.

Sampling Locations

A series of permanent cross section transects will be established at key locations within the restoration area to measure changes in channel morphology, substrate composition, vegetation structure and diversity, and other aquatic and riparian habitat quality performance indicators. Permanent transects will be established in areas where habitat features (i.e., inset floodplain benches, large woody debris structures) have been constructed to monitor the effectiveness of the features. Additional transects will be established in areas without constructed habitat features to help identify/control for reach-wide changes/trends that are not a result of constructed features. Permanent re-bar monuments will be installed at each location to mark each end of the cross section.

A minimum of one control cross section will be monitored per mile of project reach. Control cross sections will be located in areas where no channel treatments have been done. Control cross sections will be located, to the extent practicable, and in areas that represent the dominant channel type in that reach and provide representative coverage of the channel.

A minimum of two cross sections in treated areas will be monitored per mile of project reach. Treatment area cross sections will be located in areas that are expected to have the most change from instream enhancements, and that can be readily re-occupied. Monitoring cross sections will be spaced to monitor channel changes over a variety of channel types.

Cross sections were surveyed throughout the Rutherford Reach in 2004, 2005 and 2007 to establish a baseline for the survey. In each Project Phase, a subset of these cross sections will be chosen for long-term monitoring. A minimum of one cross section per half mile of river reach will be established for the purpose of long term effectiveness monitoring. Cross sections will be selected in treatment and control areas. At least three monitoring cross sections will be established per reach: Two cross sections in treated portions of the reach, and one in a control portion of the reach. The baseline cross sections located in the treatment reaches will be re-occupied and re-surveyed after construction. Thereafter, the control and treatment cross section transects will be re-occupied following a large flood event (>5 years recurrence interval), or at least once every 5 years. Ideally, the Annual Stream Reach Survey will inform adaptations to the long term monitoring program.

Phase 1: Reaches 1 and 2

Phase 1 (Reaches 1 and 2) will be constructed by spring 2009. The monitoring cross sections in the treatment reaches, which will be re-surveyed post-

construction, are located at river stations: 22,045 and 18,960. The monitoring cross sections in the control areas are located at river stations: 21,600, 21,200, and 20,600.

Phase 2: Reaches 3

Phase 2 (Reach 3) monitoring cross section stations will be determined at the time of the baseline survey in Spring 2009.

Sampling Schedule

The cross section transects in each phase will be surveyed pre-construction, and within two years post-construction, thereafter at least once every four years. Cross sections may be also resurveyed after a significant channel forming flood event or as deemed necessary by findings during the annual longitudinal stream survey.

For evaluation of project effectiveness, the cross section transects will be reoccupied based on a number of variables:

- Grant and regulatory requirements, including once within the grant timeline for Phase I implementation.
- The discretion of the survey team based on a major disturbance or change identified during the annual Maintenance Survey rapid assessment (ie. tree falling, failed instream structure, significant bank erosion, etc.).
- The occurrence of a significant channel forming flood event (likely to be at or above a 5-year recurrence interval).
- At least once within a five year period following construction in the absence of a significant flood event.
- Available budget.

Phase 1 (Reaches 1 and 2)

Phase 1 (Reaches 1 and 2) are scheduled for construction in spring 2009. Two monitoring cross sections in the treatment reaches will be surveyed in 2009 (within grant timeline). Thereafter, monitoring cross sections in both the control and treatment reaches will be surveyed at least once every five years (in 2014, 2019) or following a channel forming event, based on recurrence interval and field evidence gathered in the course of the annual longitudinal survey.

Phase 2 (Reach 3)

It is anticipated that Phase 3: Reach 3 pre-project baseline surveys will be conducted in spring 2009, and that construction will occur in spring 2010, and the post-construction annual stream survey will commence in spring 2011.
Protocol References and Data Forms

Fitzpatrick et al. (1998)

Revised Methods for Characterizing Stream Habitat in the National Water-Quality Assessment Program http://water.usgs.gov/nawqa/protocols/WRI98-4052/wri98-4052.pdf

SWAMP (2008)

Reconnaissance and Evaluation of Field Sites for Suitability for Use in Monitoring Programs www.swrcb.ca.gov/swamp/docs/qamp/appxd_guidelines.doc

Gerstein, J.M. (2005)

Monitoring the Effectiveness of Instream Habitat Restoration. University of California, Center for Forestry, Berkeley, California. 45 pgs. <u>http://forestry.berkeley.edu/comp_proj/DFG/Monitoring%20the%20Effect</u> <u>iveness%20of %20Instream%20Habitat%20Restoration.pdf</u>

Gerstein and Harris (2005)

Protocol for Monitoring the Effectiveness of Bank Stabilization Restoration http://www.cnr.berkeley.edu/forestry/comp_proj/DFG/Monitoring%20the %20Effectiveness%20of%20Bank%20Stabilization%20Restorati.pdf

Harrelson et al. (1994)

Stream channel reference sites: an illustrated guide to field technique <u>http://www.fs.fed.us/rm/pubs_rm/rm_gtr245.pdf</u>

Hayes, G. et al (2008)

Napa River, Rutherford Reach, Restoration Phase 1, Reaches 1 and 2, Pre-Project Monitoring Survey, Prepared for the Napa County Resource Conservation District, December 3, 2008. 33 pp.

Nossaman, et al (2007)

Quantitative Effectiveness Monitoring of Bank Stabilization and Riparian Vegetation Restoration: A Field Evaluation of Protocols http://ucce.ucdavis.edu/files/filelibrary/2161/36783.pdf

Rosgen, D.L. (1996) Applied River Morphology

USDA (2005) Frazier, J.W., et al

Stream Condition Inventory Technical Guide. USDA Forest Service, Pacific Southwest Region – Ecosystem Conservation Staff. Vallejo, CA 111pp.

http://www.fs.fed.us/r5/publications/water_resources/sci/techguide-v5-08-2005-a.pdf

Local Longitudinal Thalweg Survey

Objectives

Conduct local longitudinal thalweg topography surveys to assess changes in channel geomorphology and associated aquatic habitat quality in control and treated reaches.

Methods

Survey the local longitudinal thalweg profile with a total station, transit, or hand level (+/- 1 meter accuracy) in vicinity of cross sections located in expected response reaches, as well as in control reaches. Record points along the stream to capture the following attributes:

- Habitat Units
- Riffle Crests
- Pool Forming Factors
- Pool Maximum Depth
- Residual Pool Depth: Change in pool storage of fines
- Frequency and Extent of Habitat Units: Channel Complexity; Riffle Habitat Length
- Channel Adjustment: Bed Deposition or Scour associated with Instream Structures
- Channel Planform Network
- Connectivity of High Flow Refugia at Constructed Alcoves
- Gravel Bar Characteristics

Note the stations of installed instream structures along the survey. Measure bankfull width associated with installed structures to evaluate how the structures affect channel bank erosion.

In 2004, three separate, discontinuous longitudinal reaches along the Rutherford Reach were surveyed to capture the stream profile where the 2004 control survey cross section transects were clustered. In total, 8,598 feet of river thalweg was surveyed, using 142 reference point observations.

The RCD and Flood Control District possess a GIS layer of the riffle locations identified along the Rutherford Reach in 2004.

Record bankfull depth data on the *Stream Habitat Enhancement Project Evaluation Individual Structure or Site Form* located on page VIII-17, of the California Salmonid Stream Habitat Restoration Manual, Part VIII, Project Evaluation and Monitoring (Flosi et al / CDFG, 1998).

To simultaneously record the status of restoration structures and data on associated habitat type, use the Habitat Monitoring Form on page 16 of *Monitoring the Effectiveness of Riparian Vegetation Restoration*, (Harris et al ,2005), http://www.cnr.berkeley.edu/forestry/comp_proj/DFG/Monitoring%20the%20Effectiven ess%20of%20Riparian%20Vegetation%20Restorat.pdf.

Sampling Locations

Anchor the long profile to contain at least two riffles or 10 bankfull channel lengths up and downstream from the monitoring cross sections in the control and treatment areas. Note the beginning and ending river station of the profile. Monument survey endpoints so that they can be seen from the channel. Photodocument the survey.

Note the stations of installed instream structures along the survey.

Sampling Schedule

Local longitudinal profiles will be surveyed in control and treatment reaches in the vicinity of instream structures pre- and post-construction, and following a flood event (>5year recurrence interval), or at least once every 5 years.

Protocol References and Data Forms

Cover et al. (2008)

Quantitative linkages among sediment supply, streambed fine sediment, and benthic macroinvertebrates in northern California streams. University of California, Berkeley. J. N. Am. Benthol. Soc., 2008, 27(1):135–149,_ 2008 by The North American Benthological Society, DOI: 10.1899/07–032.1, Published online: 15 January 2008

Gerstein, J.M. (2005)

Monitoring the Effectiveness of Instream Habitat Restoration. University of California, Center for Forestry, Berkeley, California. 45 pgs. <u>http://forestry.berkeley.edu/comp_proj/DFG/Monitoring%20the%20Effectiveness</u> %20of %20Instream%20Habitat%20Restoration.pdf

Flosi, G., S. Downie, J. Hopelain, M. Bird, R. Coey, and B. Collins / CDFG (1998) California Salmonid Stream Habitat Restoration Manual, Third Edition. Sacramento, California, California Department of Fish and Game, Inland Fisheries Division. <u>http://www.dfg.ca.gov/nafwb/pubs/1998/manual3.pdf</u>

Lisle, Thomas E. (1987)

Using "residual depths" to monitor pool depths independently of discharge. Res. Note PSW-394. Berkeley, CA: Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture; 4 p. <u>http://www.fs.fed.us/psw/rsl/projects/water/Lisle87.pdf</u>

Nossaman, S., M. Lennox, D. Lewis, P. Olin. (2007) Quantitative Effectiveness Monitoring of Bank Stabilization and Riparian Vegetation Restoration: A Field Evaluation of Protocols. University of California Cooperative Extension. <u>http://ucce.ucdavis.edu/files/filelibrary/2161/36783.pdf</u>

USDA (2005) Frazier, J.W., et al Stream Condition Inventory Technical Guide. USDA Forest Service, Pacific Southwest Region – Ecosystem Conservation Staff. Vallejo, CA 111pp. $\underline{http://www.fs.fed.us/r5/publications/water_resources/sci/techguide-v5-08-2005-a.pdf}$

Washington State Department of Natural Resources (2007, November) Watershed Analysis Manual Version 4.0.

http://www.dnr.wa.gov/Publications/fp_wsa_manual_section06.pdf

Washington State Department of Natural Resources (2008)

Residual Pool Depth Measurement Associated with Instream Structures Objectives

Residual pool depth is measured to assess the impact of instream structures on pool structure and reducing the deposition of fines in pools.

Methods

In treated reaches along the repeated longitudinal thalweg profile, measure the residual pool depth associated with a subset installed structures to evaluate how the structures affect pool structure and the amount of fines stored in pools over time. Record residual pool depth data on the *Stream habitat Enhancement Project Evaluation Individual Structure or Site Form* located on page VIII-17, of the *California Salmonid Stream Habitat Restoration Manual, Part VIII, Project Evaluation and Monitoring* (Flosi et al / CDFG, 1998).

For an in-depth description of the protocol for measuring residual pool depth., consult Lisle, Thomas E. (1987), *Using "residual depths" to monitor pool depths independently of discharge*, http://www.fs.fed.us/psw/rsl/projects/water/Lisle87.pdf

Sampling Locations

A subset of pools associated with instream structures in treated reaches will be selected for more extensive measurement to determine change in fine sediment storage (V*). See Lisle (1987) for a description of V* rapid protocol methods.

Sampling Schedule

The local longitudinal profile survey will determine the location of pool associated with installed instream structures. This survey will take place pre-and post-construction, and then after a significant flood event (>5 years), or at least once every 5 years. The measurement of residual pool depth associated with the instream structures should take place after the first channel forming event (>5 year recurrence interval), or five years post-construction. Thereafter, residual pool depth should be re-surveyed after a significant flood event (>5 years), or at least once every 5 years.

Protocol References and Data Forms

Cover et al. (2008)

Quantitative linkages among sediment supply, streambed fine sediment, and benthic macroinvertebrates in northern California streams. University of California, Berkeley. J. N. Am. Benthol. Soc., 2008, 27(1):135–149,_ 2008 by The North American Benthological Society, DOI: 10.1899/07–032.1, Published online: 15 January 2008

Gerstein, J.M. (2005)

Monitoring the Effectiveness of Instream Habitat Restoration. University of California, Center for Forestry, Berkeley, California. 45 pgs.

http://forestry.berkeley.edu/comp_proj/DFG/Monitoring%20the%20Effectiveness %20of %20Instream%20Habitat%20Restoration.pdf

Flosi, G., S. Downie, J. Hopelain, M. Bird, R. Coey, and B. Collins / CDFG (1998) California Salmonid Stream Habitat Restoration Manual, Third Edition. Sacramento, California, California Department of Fish and Game, Inland Fisheries Division. http://www.dfg.ca.gov/nafwb/pubs/1998/manual3.pdf

Lisle, Thomas E. (1987)

Using "residual depths" to monitor pool depths independently of discharge. Res. Note PSW-394. Berkeley, CA: Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture; 4 p. <u>http://www.fs.fed.us/psw/rsl/projects/water/Lisle87.pdf</u>

Nossaman, S., M. Lennox, D. Lewis, P. Olin. (2007)

Quantitative Effectiveness Monitoring of Bank Stabilization and Riparian Vegetation Restoration: A Field Evaluation of Protocols. University of California Cooperative Extension. http://ucce.ucdavis.edu/files/filelibrary/2161/36783.pdf

USDA (2005) Frazier, J.W., et al

Stream Condition Inventory Technical Guide. USDA Forest Service, Pacific Southwest Region – Ecosystem Conservation Staff. Vallejo, CA 111pp. <u>http://www.fs.fed.us/r5/publications/water_resources/sci/techguide-v5-08-2005-a.pdf</u>

Grid Pebble Counts at Riffle Crests Nears Cross Section Transects

Objectives

Pebble counts will be conducted to monitor changes in channel substrate median particle Size (D50) and (D84) at riffle crests in control and treatment reaches.

Per Bunte and Abt (2001):

Pebble counts are used to determine the particle-size characteristics of gravel and cobble surface sediment and can be performed on dry beds as well as on inundated beds, as long as the streams are wadable. Percentile values of the cumulative particle-size frequency distribution and the percent fines are used for many applications including computations of incipient bedload motion, channel-bed roughness, stream morphology studies, cumulative watershed effects analysis, and stream habitat evaluation.

Methods

Conduct a grid pebble count at riffle crests located nearest to long-term monitoring cross section transects in treated and control reaches. Tabulate and graph the data to identify the median grain size (D50) and the 84th percentile grain size (D84) for each cross section. Follow the grid sampling method described in Bunte and Abt (2001) and USDA (2005) to reduce operator error and bias against fines.

Measure and record the distance from the long-term monitoring cross section to the sampled riffle crest. Calculate and note the river station of the sampled riffle crest.

Whereas Bunte and Abt (2001) recommend sampling from high flow bank to high flow bank, we will sample the active bed width of the incised channel as described in USDA (2005):

Measurement is conducted on the stream bottom so that the streambed is sampled without incorporating bank materials. The stream bottom is the area of the stream that is practically bare of vegetation caused by the wash of waters of the stream from year to year. It is therefore at a level less than bankfull stage and excludes streambanks.

This width may correlate with the summer low flow channel.

Divide the bed width of the channel to be sampled into ten equal intervals. Have operators sample in a grid along a tape beginning at the riffle crest and working downstream. Make sure that the grid interval, or the spacing between sampled particles, exceeds the length of the *b*-axis of the D_{max} particle size of concern. This spacing is necessary in order to prevent double counting of large particles, which should be avoided because it causes a serially correlated sample and bias towards large particle sizes. (Bunt and Abt, 2001). Where an anomalously large particle is present use the largest dominant particle size in the riffle. For example, if a riffle is 70% gravel and 30% cobble but has one very large boulder, use the largest cobble as the minimum spacing guide (USDA, 2005). Make the grid interval equal to 1/10 of the width of the channel as determined by a taped stretched horizontally across the channel. Have operators use a scratch awl, and averted gaze, to sample the particle at each grid intersection. Sample a minimum of 100 particles at each bar. Measure the intermediate axis of each particle to the nearest millimeter. Record the actual measured particle size in the same grid pattern location in which the particle was sampled. Record whether the particle was located in water. In this way the notes will provide a visual representation of the particle size distribution as sampled. A gravelometer could be used instead of rulers for future pebble counts.

Tips for reducing operator bias and errors while surface sampling with pebble counts from Bunte and Abt (2001):

- Use a sampling frame when selecting particles to reduce operator preference for "handy" particles, or sample along a tape measure on dry beds.
- Sample along a strictly determined grid pattern that covers the sampling area to prevent operators from omitting "unappealing" streambed locations.
- Space sampling points by at least the *D_{max}* particle size in order to avoid counting large particles multiple times which results in a serially correlated sample.
- Record all particle sizes for each transect in sequential order (e.g., from left to right bank). Include the location of the current water line. Such a record helps to determine a systematic spatial variation of particle sizes and allows a deferred decision on whether particles from the high-flow bed are included or excluded from the study.
- One operator should select and retrieve all particles. A second person may assist by taking over the template measurements.
- The use of templates to measure particle sizes avoids measurement errors but requires that the size distribution approximates normality. Use calipers only if the measured range of particle sizes is small (less than 0.5 or 1 units), if particle sizes are definitely not normally distributed, or when measuring all particle axes for an analysis of particle shape.

Sampling Locations

Riffle crests located nearest to long-term monitoring cross section transects in treated and control reaches.

Sampling Schedule

Pebble counts will be conducted concurrent with re-surveying of the monitoring cross sections pre- and post-project construction, and post channel forming flood event.

Protocol References and Data Forms

Bunte, Kristin; Abt, Steven R. (2001)

Sampling surface and subsurface particle-size distributions in wadable graveland cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring. http://www.fs.fed.us/rm/pubs/rmrs_gtr74.html

Cover et al. (2008)

Quantitative linkages among sediment supply, streambed fine sediment, and benthic macroinvertebrates in northern California streams. University of California, Berkeley. J. N. Am. Benthol. Soc., 2008, 27(1):135–149,_ 2008 by The North American Benthological Society, DOI: 10.1899/07–032.1, Published online: 15 January 2008.

USDA (2005) Frazier, J.W., et al

Stream Condition Inventory Technical Guide. USDA Forest Service, Pacific Southwest Region – Ecosystem Conservation Staff. Vallejo, CA 111pp. <u>http://www.fs.fed.us/r5/publications/water_resources/sci/techguide-v5-08-2005-a.pdf</u>

Photodocumentation of Cross Section Transects

Objectives

The objective for photodocumenting cross section transects is to create a visual record to assess changes along the cross section in vegetation and channel geomorphology on the cross section, as well as upstream and downstream in the vicinity of the cross section. Photodocumentation of cross section monuments is also instrumental for relocating and re-occupying the survey cross section in the correct location.

Methods

At a minimum, photodocument each cross section from each endpoint monument and any monuments established along the cross section. Also photodocument from the center of the channel on the cross section. Take photographs in a minimum of four directions: facing downstream, towards the right bank, upstream, and towards the left bank from each point. Ideally, take eight photos to create a 360 degree record from each point. Take photos of other features of interest, making sure to describe the photopoint in relation to a monument, or distance and bearing from a station along the cross section. Indicate the river station corresponding to the photo location.

Where necessary to establish a new photopoint monument, record the distance and bearing from the monument to at least two fixed locations that can be re-located, such as tree tags installed for this purpose, or permanent landscape features, such as building corners, or fence posts. Describe the fixed points. Photograph these points from the photopoint for re-location purposes.

Record the GPS point, stream station, photographer location (in-channel, at a monument pin or tag), and direction of photograph on the Photo Form. Record the compass bearing of the direction in which the photo is taken. Record the subject of the photograph.

Sampling Locations

Each surveyed cross section will be photodocumented in a 360 degree manner at each permanent monument, at the center of the stream channel, and at other points deemed relevant in the field.

Sampling Schedule

Photodocumentation of cross sections and local longitudinal profiles will take place concurrent with the pre- and post- project surveys. Photodocumentation in the channel at each cross section will also be done during the Annual Stream Reach Survey. Photodocumentation of re-vegetated areas along the control and treatment monumented cross sections will also be done during the phased vegetation surveys.

Start Station			Stream Na	me:		Date:	Surveyors:
			Photod	documentation			
GPS PT	FROM +US/-DS	TO +US/-DS	Photo No.	Photographer Location, Monument Pin or Tag Number	Direction of Photo Relative to Stream	Compass Bearing	Subject / Feature / View / Notes
	(feet)	(feet)	#	LB, RB, CH, etc	US, DS, RB, LB	Degrees	

DS-Downstream US-Upstream LB-Left Bank RB-Right Bank CH-Channel TOP-Top of Bank Pin MID-Mid Bank Pin BTM – Base of Bank Pin

Protocol References and Data Forms

Gerstein, J.M. and S.D. Kocher. (2005)

Photographic Monitoring of Salmonid Habitat Restoration Projects. University of California, Center for Forestry, Berkeley, CA. 21 pp. <u>http://www.cnr.berkeley.edu/forestry/comp_proj/DFG/Photographic%20Monitoring%20</u> <u>of%20Salmonid%20Habitat%20March%202005.pdf</u>

Hayes, G. et al (2008)

Napa River, Rutherford Reach, Restoration Phase 1, Reaches 1 and 2, Pre-Project Monitoring Survey, Prepared for the Napa County Resource Conservation District, December 3, 2008. 33 pp.

USDA (2005) Frazier, J.W., et al

Stream Condition Inventory Technical Guide. USDA Forest Service, Pacific Southwest Region – Ecosystem Conservation Staff. Vallejo, CA 111pp. http://www.fs.fed.us/r5/publications/water_resources/sci/techguide-v5-08-2005-a.pdf

Phased Vegetation Establishment Surveys

Objectives

The objectives of the phased vegetation survey are to:

- Evaluate restoration planting survival and establishment success in treated reaches.
- Control target non-native invasive and Pierce's disease host plant species, to the extent practicable.

The vegetation surveys are to be performed by the contractor responsible for plant installation. The monitoring schedule is the first, second, third, fifth and seventh year after planting. In addition, general information regarding vegetation community distribution and riparian buffer width will be collected along the cross section transects located in the control and treatment reaches. These cross sections are surveyed before and after construction, and then after large flood events. Riparian vegetation data will be supplemented with aerial photo analysis as budgets allow.

In order to assure consistency with CDFG protocols, use the plant species identification codes in Flosi et al (1997) for describing vegetation.

Monitoring Parameters by Category

The parameters to be identified, mapped and assessed in the Phased Vegetation Survey are presented in Table 1 organized by monitoring category.

The following riparian vegetation establishment success parameters will be evaluated in years 1,2,3, 5 and 7:

- Restoration Planting Survival
- Relative Abundance of Native versus Non-Native Plant Cover
- Percent Cover of Pierce Disease Plants
- Riparian Vegetation Buffer Width

Monitoring Parameter Methods

The following protocols will be used to assess the above parameters:

- Riparian Vegetation Cross Section Transects: Direct Count
- Line-Point Intercept Vegetation Survey
- Photodocumentation
- Cross Section Transect Surveys
- Air Photo Analysis

The methods for conducting these protocols are individually discussed below.

Riparian Vegetation Cross Section Transects: Direct Count

Objectives

The objective of performing a direct count vegetation census is to assess survivorship of planted trees and shrubs in treated areas.

Methods

To assess survivorship of planted trees and shrubs in treated areas, follow the Planted Tree Survival Assessment protocol in Harris et al (2005) utilizing the revised forms in Nossaman et al (2007). For detailed instructions on establishing a plot sampling strategy, refer to FIREMON's Integrated Sampling Strategy (2003a).

Complete the CRMEP Post-Treatment Checklist for Revegetation Treatments at each site surveyed (Collins, 2008).

Post-Treatment Form Instructions

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effectivenes s_Monitoring/Instructions/7b%20RT_Post_Checklist_Instructions_2008.pdf

Post-Treatment Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effectivenes s_Monitoring/Checklists/7b%20RT_Post_Revegetation_2008.pdf

In addition, photodocument the survey per the Photodocumentation protocol described below in the next section.

Instructions from Harris et al (2005) for the Planted Tree Assessment protocol are as follows:

Survey techniques for evaluating the survival of planted trees are well established (Stein 1992). The method recommended here is appropriate for evaluating treatment areas with a relatively uniform distribution of single stem seedlings. This method is not appropriate for projects where seedlings are planted in single lines, randomly or in clumps. For those projects, it would be necessary to flag or otherwise identify planted seedlings in order to track survival. This method is also appropriate for evaluating survival of herbaceous plantings, willow baffles, willow mattresses, or similar projects.

Control sites are not required for assessments of planting survival unless there is a desire to evaluate the effects of natural recruitment or of extreme events (floods or droughts) on plantations. If it is desirable to separate planted from naturally recruited individuals of the same species, planted stock must be flagged or otherwise identified.

For evaluating survival of shrub and/or herbaceous plantings, other methods are

required. Line intercept... is recommended to evaluate survival of vegetative clumps or shrubs within delineated treatment areas, within 50 feet of the channel or along banks. For plantings involving grasses or other small, individual plants, point intercept methods may be more appropriate. Texts on rangeland sampling should be consulted in the event that these kinds of projects must be assessed for survival.

Determination of Sample Size

Determine the extent and location of the project area(s) using polygon traverses, as outlined above or other information. Using GIS, planimeter, or dot grid determine the area(s) of the polygon(s) to be planted in acres.

KEVIN MACKAY-PLEASE PROVIDE FEEDBACK ON THIS PARAGRAPH

Once the area has been determined for each polygon, the required number of 1/100-acre sample plots is determined as follows. If the polygon is less than 30 acres, two percent of the area should be sampled. If the area of the polygon is greater than 30 acres, one percent of the area should be sampled. In any event, a minimum of 5 sample plots should be surveyed. If the polygon is less than 0.25 acre, all seedlings should be counted.

Field Method

Determine locations of sample plots within the project area polygon(s). The plots need to be equally distributed. First, divide the number of acres in the project area by the number of plots that will be surveyed. This will give the portion of an acre that each plot represents. Multiply this number times the square feet in one acre: 43,560. Then calculate the square root of the result to provide a value in lineal feet. This will be the distance between lines and between plots on the line.

After the distance between plots and lines has been determined, these lines and plot locations are drawn onto the appropriately scaled map. All lines must be parallel to each other and the first line should be inset from the polygon boundary by one half the calculated distance between plots and lines (147.5/2 = 73.8 feet). After drawing the grid on the map, determine the distance and bearing to the first plot from a recognizable reference point (e.g., bridge, tributary junction, large snag, etc.)

Locate the reference point on a map or air-photo. Navigate to the first plot location using the bearing and distance calculated from the map or air-photo. After recording data for the first plot, navigate to all successive plots with a compass set to the bearing of the lines drawn on the map or air-photo. All distances between plots must be slope corrected.

After locating the plot center, measure out a distance of 11.4 feet due north. Search the plot in a clockwise direction for seedlings until arriving back at the due north starting point of your search. For every seedling within 11.4 feet of plot center record *species* and *vigor class* (live, dead, or dying). Record any observations regarding obvious causes of death (browsing, desiccation, competition, etc.) or other relevant observations in the comments section for the plot, not for each seedling.

Data Analysis

These data may be used to calculate: average number of trees per acre by species across all plots, percent of live versus dead seedlings observed and percent of plots with at least one live seedling. A confidence interval of survival rate at each site can be computed (if the treated area is less than 0.25 acres then the survival rate is known).

PLANTATION SURVIVAL DATA FORM

Page of	Page	of
---------	------	----

Contract #:	Contract Name:	Impl	ementation Mo/Yr:
Site Name:		Stream/Drainage:	
Evaluators:	Date:	Project Feature #/Name:	Polygon #:
Location:	Start Point:		

Streambank: (*Left* or *Right*) **Direction:** (*Upstream* or *Downstream*)

Plot #	Species	Vigor	Tally	Comments

Vigor Class = Live, Dead, Poor Health, Vigorous Growth

Species Codes

Additional Comments:

Instructions for Completing the Planted Tree Survival Assessment Data Form General Information- section 1

1) **Page** of _____Number the page. For example, if this is page 2 out of 3 total pages, enter: Page 2 of 3.

2) Contract #—Enter in the contract number assigned to this project by the Department of Fish and Game.

3) **Contract Name** – Enter the name of the contract.

4) **Stream Name**—Enter in the name of the stream or road. If unnamed, use named stream or road to which it is tributary.

5) **Date**—Enter the date: *mm/dd/yy*

6) Crew—Enter the names of the crew members collecting the data using the following format: *last name, first initial.*

7) **Drainage Name**—Enter the name of the main drainage basin that the stream is a tributary to.

8) **Polygon #/Location-** Enter the number of the treatment polygon and locational information.

9) Start Point- Describe the location at which the survey began, using permanent reference points.

10) Streambank- Circle the stream bank being surveyed, if applicable.

11) Survey Direction- Circle the direction of travel taken by surveyors during data collection, if applicable.

Seedling Survey Data – section 2

13) **Plot #-** Enter the number of the plot where the data is collected.

14) **Species-** Enter the species of the seedlings found on the plot.

15) **Vigor-** Enter all possible vigor classes for seedlings of each species, live, poor health and dead.

16) Tally- For each species and vigor class, enter the number of seedlings found on that plot as a dot tally.

17) **Comments**- Enter any pertinent comments on the seedlings found in that plot.

Sampling Locations

Restoration planting survival of trees surveys will take place in sampled plots of revegetated riparian areas.

The protocol for delineating study areas from Harris et al (2005) is as follows:

Study areas may be discrete areas or stream reaches. Stream reach study area locations are documented by stream station, and channel bank.. Generally, stream reach study areas should begin and end with the limits of proposed treatments, even if the treatments are not continuous. For example, if a stream reach has 11 defined sites for riparian planting, the study area boundaries would begin with the most upstream treatment site and end with the most downstream treatment site.

Control (untreated) stream reaches, if possible, should be located upstream of the treated area, or at least in their vicinity. Control reaches should be environmentally and ecologically comparable to the reaches that will be treated.

In some cases, riparian restoration treatments are applied to relatively large, independent areas such as grazing exclusions, plantings on eroded sites, exotic plant eradications, etc. In such cases, it is necessary to establish the boundaries of the area proposed for treatment so that it may be properly sampled and relocated in the future:

- Establish the location of one corner of the area relative to a known reference point. Flag the perimeter of the area to be treated.
- At each polygon corner, record the bearing between the corners.
- Using a hip chain or tape, record the length of each side of the polygon.
- Sketch the polygon onto field form.

In the example figure, points 1, 2, 3, 4, and 5 are corners of the treatment polygon. Record the length of each side (e.g., the distance between points one and two). Record the bearings between all corners. The angle theta at point one is the difference in degrees between the bearing on line 1 to 2 and the bearing on line 1 to 5.

For more guidance on this procedure refer to *Documenting Salmonid Habitat Restoration Project Locations*.

Sampling Schedule

Restoration planting survival surveys will take place 1,2,3,5 and 7 years after planting to evaluate establishment success.

Protocol References and Data Forms

Collins, B. (2008)

Coastal Restoration Monitoring and Evaluation Program Qualitative Monitoring Forms. California Department of Fish and Game, Fort Bragg, California. http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/

(Will be incorporated into Flosi et al. CDFG Stream Restoration Manual Chapter 8)

Harris, R.R., S.D. Kocher, J.M. Gerstein and C. Olson. (2005) Monitoring the Effectiveness of Riparian Vegetation Restoration. University of California, Center for Forestry, Berkeley, CA. 33 pp. <u>http://www.cnr.berkeley.edu/forestry/comp_proj/DFG/Monitoring%20the%20Effective n ess%20of%20Riparian%20Vegetation%20Restorat.pdf</u>

FIREMON. (2003a)

Fire Effects Monitoring and Inventory Protocol: Integrated Sampling Strategy. Joint Fire Science Program. U.S. Department of the Interior and U.S.D.A Forest Service. Figures by Courtney Crouch.

http://frames.nbii.gov/portal/server.pt?open=512&objID=286&PageID=492&cached=tr ue&mode=2&userID=2

Gaffney, K. (2008)

Riparian Habitat Assessment Protocol.

Nossaman, S., M. Lennox, D. Lewis, P. Olin. (2007) Quantitative Effectiveness Monitoring of Bank Stabilization and Riparian Vegetation Restoration: A Field Evaluation of Protocols. University of California Cooperative Extension.

http://ucce.ucdavis.edu/files/filelibrary/2161/36783.pdf

Winward, Alma H. / USDA (2000)

Monitoring the Vegetation Resources in Riparian Areas, Ogden, UT. United States

Department of Agriculture, Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-47, April 2000, 49pp.

Line-Point Intercept Vegetation Survey

Objectives

The objectives of the line point intercept vegetation survey are to assess the relative abundance of native versus non-native tree and shrub cover and species composition in re-vegetated areas.

Methods

To assess species composition in treated areas, follow the Riparian Line Intercept protocol in Harris et al (2005) utilizing the revised forms in Nossaman et al (2007). In addition, photodocument the survey per the Photodocumentation protocol described below in the next section.

Complete the CRMEP Post-Treatment Checklist for Revegetation Treatments at each site surveyed (Collins, 2008).

Post-Treatment Form Instructions

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effectivenes s_Monitoring/Instructions/7b%20RT_Post_Checklist_Instructions_2008.pdf

Post-Treatment Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effectivenes s_Monitoring/Checklists/7b%20RT_Post_Revegetation_2008.pdf

Instructions from Harris et al (2005) for the Planted Tree Assessment protocol are as follows:

Data on herbaceous cover are not analyzed for two reasons: 1) herbaceous cover tends to vary on a seasonal basis; and 2) coastal restoration projects rarely involve the use of herbaceous vegetation. If it is desirable to collect herbaceous data for analysis purposes, other methods should be used. A text or paper on range sampling should be consulted for guidance (e.g., Winward 2000).

Determination of Sample Size

The entire length of stream that is treated or control is measured. In a study assessing effectiveness of practices across many sites or regions, each transect would be a sample and an estimate of the mean difference in condition before and after treatment on treated and control sites can be made. A paired single-sided *t*-test will be used for statistical comparison.

Sample size will be determined by the specified level of change detection i.e., the quantified effectiveness criteria, and the number of locations that are treated (and their corresponding control areas). The measurement of difference methodology is statistically powerful such that a relatively small sample will be sufficient to detect differences. Also, the changes due to restoration will generally be large (e.g., cover increases of 50 percent or greater). A pilot study may be used to obtain estimates of variance in cover and to then compute required sample sizes. The use of paired observations tends to reduce the variance thereby reducing

the required sample needed to detect differences (Dixon and Massey 1969).

Field Method

Describe and/or monument the starting point for the transect. Multiple monuments may be needed to ensure relocating the point in the future. Distance from a bridge, road, parking lot, or other landscape feature is useful in referencing the starting point. Tie this point into other monitoring activities if possible. It is essential that the starting point be identifiable in the future

From the monumented starting point, establish the line intercept transect along the left bank of the channel (if both sides of reach are to be treated, or either bank, if only one side is to be treated) with a tape measure (Figure 2). The line should intercept the permanent riparian vegetation closest to the channel bankfull line (i.e., the "green line" according to Winward [2000]). The line intercept may be at, below or above bankfull depending on the location of permanent vegetation at that particular site. If no vegetation is present, the transect should follow the bankfull elevation.

Walk along the channel bank and record interception of the line (in feet and/or inches, to the nearest 0.5 foot) by each shrub or tree species (or genus if species is not identifiable) within three height class categories (less than 3 feet, 3 to 15 feet, and over 15 feet). Record interception by herbaceous cover (if >10 percent; barren otherwise), litter, rock, or restoration structures where vegetation is not present (see Figures 1 through 4 for guidance on how to record intercept data). It may be necessary to repeat the line more than once to accurately measure vegetation in each height class.

Repeat for the right bank if both sides of the reach are to be treated.

Figure 2 demonstrates the method for measuring canopy cover intercept along the measuring tape. Record the start of the plant intercept (A) in the Start field and the end intercept (B) in End field in feet.

Figure 2. Method for Measuring Canopy Intercept. Source: FIREMON 2003.

Figure 3 demonstrates the method for measuring canopy overlap. Overlap, (points B to C) is not measured if the canopy of two or more plants of the same species overlap. For example, if shrubs 1 and 2 are the same species, then the canopy intercept is measured from points A to D. If shrubs 1 and 2 are different species, then canopy intercept is measured from points A to C for shrub species 1 and from points B to D for shrub species 2. Overlap of different species is subtracted to obtain total cover estimates but is retained to estimate relative cover by species.

Figure 3. Method for Measuring Canopy Overlap. Source: FIREMON 2003.

Figure 4 illustrates the method for measuring gaps in the canopy. Gaps (points B to C) greater than 6 inches (5 cm) are not measured. The canopy intercept for this shrub is measured from point A to D if the distance from B to C is less than or equal to 6 inches or measured from points A to B and points C to D if the gap is greater than 6 inches.

Figure 4. Method for Measuring Canopy Gaps. Source: FIREMON 2003.

Figure 5 shows how to estimate the average plant height only for the portion of the plant intercepted by the tape. If the tape crosses the entire plant then average the height for the entire plant (A). If the tape only crosses a portion of the plant, estimate the average height for only the part that is intercepted (B).

Figure 5. Method for Estimating Tree Height.

Data Analysis

In a study of effectiveness, at least three parameters may be of interest: 1) total length of vegetated bank as a proportion of total bank length, 2) percent cover of one or more species targeted for restoration (or removal), 3) relative cover of one or more species targeted for restoration (or removal). As shown below, the analysis can be done for each of the height

classes and then combined to produce total cover measurements. They would be calculated in the same way as shown below for these three parameters.

Total length of vegetated bank as a proportion of total bank length is calculated as follows:

Total length of sampled line with vegetation cover in height class A, B or C/Total length of sampled line * 100 = Percentage of reach with vegetated banks in height class A, B or C

In cases where canopy overlap by different species occurs, it should be subtracted so that the maximum cover in any one layer cannot exceed 100 percent. As indicated, cover should be calculated separately for each height class. It may be expressed for one or both banks, as desired. Adding together the estimates for each canopy layer will produce a total cover measurement that may be up to 300 percent. Which data will be most important for analysis will depend on the objectives of the restoration (e.g., increase bank cover, increase shade canopy, etc.) and study design.

Percent cover for each species (or for other cover elements) is calculated as follows:

Length of sampled line with species (X)/Total length of sampled line *100 = Percent cover of species (X)

These data should initially be provided for each of three canopy layers. The total maximum cover for all three layers may exceed 100 percent in cases where a species occurs in more than one canopy class.

Relative cover is defined as the cover of one species relative to the cover of all species combined. It is a measure of dominance that can be directly related to restoration project effectiveness. It is calculated as follows:

Length of sampled line with species (X)/Total length of sampled line with vegetation cover * 100 = Relative cover of species (X)

Again, data may be provided for each of the three canopy layers or for all layers combined

For each variable of interest the test of statistical significance, to see if treatment resulted in achieving target levels, will be a paired *t*-test.

Figure 6 is an example of the results obtained from use of this method. The figure shows the total percent cover of riparian vegetation along banks on stream reaches 1 and 2, Lower Wilson Creek, CA. Vegetation data were collected using a line transect approximately following the bankfull channel elevation. Data are from the right bank on reach 1 and the left bank on reach 2.

Figure 6. Cover Values for Transects Along Banks on Wilson Creek.

In addition to the above methods, distinguish between Pierce Disease plants and those that are not by placing and asterisk next to the species code on the data form.

For recommended updates to the field protocol and forms, see Nossaman et al (2007).

Instructions for Completing the Line Intercept Transects Field Data Collection Form

General Information- section 1

1) Page ____ of _____Number the page. For example, if this is page 2 out of 3 total pages, enter: Page 2 of 3.

2) Contract #—Enter in the contract number assigned to this project by the Department of Fish and Game.

3) **Contract Name** – Enter the name of the contract.

4) **Stream/Road Name**—Enter in the name of the stream or road. If unnamed, use named stream or road to which it is tributary.

5) **Date**—Enter the date: *mm/dd/yy*

6) **Crew**—Enter the names of the crew members collecting the data using the following format: *last name, first initial.*

7) **Drainage Name**—Enter the name of the main drainage basin that the stream is a tributary to. 8) **Transect #-**Enter the number of the transect for which data is being recorded.

9) **Transect Length**- Enter the total length of the completed transect.

10) Start Point- Describe the location at which the survey began, using permanent reference points.

11) **Streambank**- Circle the stream bank being surveyed, if applicable.

12) Survey Direction- Circle the direction of travel taken by surveyors during data collection, if applicable. Line Intercept Vegetation Data – section 2

13) <3 Foot Height Class Start Distance -Enter the distance displayed on the tape at the location where the vegetation begins.

14) <3 Foot Height Class End Distance - Enter the distance displayed on the tape at the location where the vegetation ends.

15) **Species -** Enter the species found at that section of the line. Or, if unvegetated, enter barren soil, wood, rock, restoration structure or other structure according to codes listed on the data sheet.

16) 3-15 Foot Height Class Start Distance - Enter the distance displayed on the tape at the location where the vegetation begins.

17) **3-15 Foot Height Class End Distance -** Enter the distance displayed on the tape at the location where the vegetation ends

18) **Species-** Enter the species found at that section of the line.

19) **>15 Foot Height Class Start Distance -** Enter the distance displayed on the tape at the location where the vegetation begins.

20) >15 Foot Height Class End Distance - Enter the distance displayed on the tape at the location where the vegetation ends

21) **Species** – Enter the species found at that section of the line. If litter, rock, or restoration structures are found on that section, enter the appropriate code. Add codes as needed for objects encountered on the

line. STAR IF A PIERCE DISEASE PLANT.

22) Comments – Record relevant comments, including the location at which any associated monitoring transects or plots are taken.

RIPARIAN LINE INTERCEPT DATA FORM

Page ____ of ____ Implementation Mo/Yr:

Contract #:	(Contract Name:		Implementation Mo/Yr:
Site Name:			Stream/Drainage:	
Evaluators:		Date:	Project Feature #/Name:	Method #:
Transect #:	Length:	Start Point:		

Streambank: (Left or Right) Direction: (Upstream or Downstream) Project Phase: (Pre-treatment or Post-treatment)

0-3' Heig	ght Class		3-15' Height Class			>15' Height Class			Comments
Start	End	Species	Start	End	Species	Start	End	Species	(location & bearing of transect.
Distance		Pierce 🛣 Disease	Dis	tance	Pierce ☆ Disease	Dis	tance	Pierce 🛣 Disease	total # transects)

Species Codes

	BRRS = Barren Soil
	ALLV = Cobble, gravel and/or sand
	ROCK = Boulders, bedrock, concrete
	LITT = Leaf litter
	HERB = Herbaceous
	ROOT = Woody roots
	WOOD = Dead wood
	REST = Restoration Structure
	OTST = Other Structure

 $LB = Left Bank, RB = Right Bank, UPS = Upstream, DNS = Downstream, \parallel = Parallel, \perp = Perpendicular$

Additional Comments:

Sampling Locations

Surveys of restoration planting survival will take place in all sampled plots of revegetated areas.

The protocol for delineating study areas from Harris et al (2005) is as follows:

Study areas may be discrete areas or stream reaches. Stream reach study area locations are documented by stream station, and channel bank. Generally, stream reach study areas should begin and end with the limits of proposed treatments, even if the treatments are not continuous. For example, if a stream reach has 11 defined sites for riparian planting, the study area boundaries would begin with the most upstream treatment site and end with the most downstream treatment site.

Control (untreated) stream reaches, if possible, should be located upstream of the treated area, or at least in their vicinity. Control reaches should be environmentally and ecologically comparable to the reaches that will be treated.

In some cases, riparian restoration treatments are applied to relatively large, independent areas such as grazing exclusions, plantings on eroded sites, exotic plant eradications, etc. In such cases, it is necessary to establish the boundaries of the area proposed for treatment so that it may be properly sampled and relocated in the future :

- Establish the location of one corner of the area relative to a known reference point. Flag the perimeter of the area to be treated.
- At each polygon corner, record the bearing between the corners.
- Photodocument the site from each flagged corner.
- Using a hip chain or tape, record the length of each side of the polygon.
- Sketch the polygon onto field form.

In the example figure, points 1, 2, 3, 4, and 5 are corners of the treatment polygon. Record the length of each side (e.g., the distance between points one and two). Record the bearings between all corners. The angle theta at point one is the difference in degrees between the bearing on line 1 to 2 and the bearing on line 1 to 5.

For more guidance on this procedure refer to *Documenting Salmonid Habitat Restoration Project Locations*.

Sampling Schedule

Vegetation composition surveys will take place 1,2,3,5 and 7 years after planting.

Protocol References and Data Forms

Collins, B. (2008)

Coastal Restoration Monitoring and Evaluation Program Qualitative Monitoring Forms. California Department of Fish and Game, Fort Bragg, California. <u>http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/</u>

(Will be incorporated into Flosi et al. CDFG Stream Restoration Manual Chapter 8)

Revegetation Treatments (RT)

Pre-Treatment Form Instructions

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effectiveness s_Monitoring/Instructions/7a%20RT_Pre_Checklist_Instructions_2008.pdf

Pre-Treatment Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effectivenes s_Monitoring/Checklists/7a%20RT_Pre_Revegetation_2008.pdf

Implementation Form Instructions

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Implementat ion_Monitoring/Instructions/7%20RT_Imp_Checklist_Instructions_2008.pdf

Implementation Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Implementat ion_Monitoring/Checklists/7%20RT_Imp_Revegetation_2008.pdf

Post-Treatment Form Instructions

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effectivenes s_Monitoring/Instructions/7b%20RT_Post_Checklist_Instructions_2008.pdf

Post-Treatment Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effectivenes s_Monitoring/Checklists/7b%20RT_Post_Revegetation_2008.pdf

Gaffney, K. (2008)

Riparian Habitat Assessment Protocol.

Harris, R.R. (1999)

Defining reference conditions for restoration of riparian plant communities: examples from California, USA. Environmental Management. 24: 55-63.

 Harris, R.R., S.D. Kocher, J.M. Gerstein and C. Olson. (2005)
Monitoring the Effectiveness of Riparian Vegetation Restoration. University of California, Center for Forestry, Berkeley, CA. 33 pp. <u>http://www.cnr.berkeley.edu/forestry/comp_proj/DFG/Monitoring%20the%20Effective</u> <u>n ess%20of%20Riparian%20Vegetation%20Restorat.pdf</u>

 Herrick, Jeffrey E., Justin W. Van Zee, Kris M. Havstad, Laura M. Burkett and Walter G. Whitford. (2005)
Monitoring Manual for Grassland, Shrubland and Savannah Ecosystems: Volume I – Quick Start. USDA-ARS Jornada Experimental Range, Las Cruces, NM. <u>http://californiarangeland.ucdavis.edu/Publications%20pdf/Quick_Start.pdf</u>

 Herrick, Jeffrey E., Justin W. Van Zee, Kris M. Havstad, Laura M. Burkett and Walter G. Whitford. (2005)
Monitoring Manual for Grassland, Shrubland and Savannah Ecosystems: Volume 2 – Design, supplementary methods and interpretation. <u>http://californiarangeland.ucdavis.edu/Publications%20pdf/Volume_II.pdf</u>

Interagency Technical Reference. (1996)

Sampling vegetation attributes. U.S.D.A., U.S. Forest Service, Natural Resources Conservation Service, and Grazing Land Technology Institute. US Department of the Interior, Bureau of Land Management – National Applied Resource Sciences Center, P.O. Box 25407, Denver, CO 80225-0047. BLM/RS/ST-96/002+1730. 163 pages.

Nossaman, S., M. Lennox, D. Lewis, P. Olin. (2007)

Quantitative Effectiveness Monitoring of Bank Stabilization and Riparian Vegetation Restoration: A Field Evaluation of Protocols. University of California Cooperative Extension.

http://ucce.ucdavis.edu/files/filelibrary/2161/36783.pdf

Winward, Alma H. / USDA (2000)

Monitoring the Vegetation Resources in Riparian Areas, Ogden, UT. United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-47, April 2000, 49pp.

Photodocumentation of Riparian Vegetation

Objectives

The objective for photodocumenting riparian vegetation establishment is to create a visual record to assess changes in vegetation over time.

<u>Methods</u>

Before project construction, establish monument points from which to photograph restoration planting establishment, survival, and growth. Establish a set of permanent photomonitoring stations to document progress in restoration areas that are not selected for detailed surveys. Choose photomonitoring stations prior to implementation of each phase of the restoration project to document both pre- and post-project conditions. Mark station locations using metal T-posts, re-bar monuments, or relative distances from identified fixed points marked with metal id tags. Record GPS (Geographic Information System) coordinates at each station and document each location on a map of the project reach. The number and coverage of photographs taken at each station may vary, depending on the location of the station and the size and condition of the target feature. Record compass bearings for each photo. Record the subject of the photograph.

For each survey plot, photodocument the location from the corners of the polygonal sampling plot towards the center.

Sampling Locations

Photodocumentation of restoration planting survival will take place at monuments that are established before project construction, and at the corners of all sampled plots of revegetated areas. New permanent monument points may have to be established after project construction in the event that the pre-project monuments are not able to be re-occupied, or in the event that better vantage points can be established for long term documentation post-construction

Phase 1: Reaches 1 and 2

Project construction of Phase1 (Reaches 1 and 2), which spans from river station 18,600 to 24,900, is expected to be completed in 2009. Discontinuous riparian re-vegetation treatment areas are located along the left and right banks of the entire subreach.

Phase 2 (Reach 3)

Project construction of Phase2 (Reach 3), which spans from river station XXXX to 18,600, is expected to be completed in 2010. Discontinuous riparian re-vegetation treatment areas are located along the left and right banks of the entire subreach.

Sampling Schedule

Photos will be taken pre-project at pre-established monument. Thereafter, photodocumentation of the restoration planting survival of riparian vegetation will take place 1,2,3,5 and 7 years

after planting concurrent with vegetation surveys in the spring after vegetation has leafed out at those locations, and at additional vegetation survey polygon plot corners.

Phase 1: Reaches 1 and 2

Phase 1 (Reaches 1 and 2) are scheduled for construction in spring 2009, and the postconstruction annual stream reach survey will commence in spring 2010.

Phase 2 (Reach 3)

It is anticipated that Phase 3: Reach 3 pre-project baseline surveys will be conducted in spring 2009, and that construction will occur in spring 2010, and the post-construction annual stream survey will commence in spring 2011.

Protocol References and Data Forms

Hayes, G. et al (2008)

Napa River, Rutherford Reach, Restoration Phase 1, Reaches 1 and 2, Pre-Project Monitoring Survey, Prepared for the Napa County Resource Conservation District, December 3, 2008. 33 pp
Start	Station		Stream Na	itream Name:			Surveyors:
			Photod	documentation			
GPS PT	FROM +US/-DS	TO +US/-DS	Photo No.	Photographer Location, Monument Pin or Tag Number	Direction of Photo Relative to Stream	Compass Bearing	Subject / Feature / View / Notes
	(feet)	(feet)	#	LB, RB, CH, etc	US, DS, RB, LB	Degrees	

DS-Downstream US-Upstream LB-Left Bank RB-Right Bank CH-Channel TOP-Top of Bank Pin MID-Mid Bank Pin BTM – Base of Bank Pin

Air Photo Analysis

Objectives

The objectives of air photo analysis are to detect change over time in channel planform network and associated riparian habitat extent.

Methods

Document the width of the riparian buffer along the stream channel. Document the spatial extent of the stream channel network.

As aerial photos become available, measure the extent of the riparian buffer along the stream channel by outlining the riparian vegetation boundary along both sides of the channel. Subdivide these polygons by re-vegetated and pre-project vegetation areas. Use GIS analysis to compare changes in riparian vegetation extent through time. Note where other natural and physical disturbances to pre-existing vegetation cover have occurred.

As aerial photos become available, delineate the channel network. Compare the current and historic networks to detect change in drainage locations, stream length, and channel width.

Sampling Locations

Document the extent of the riparian buffer and the stream channel network along the entire length of the stream channel on both the right and left banks. Include any secondary channels or alcoves.

Sampling Schedule

Air photo analysis will be conducted as air photos become available and as the budget allows.

Stakeholder Participation Surveys

Objectives

The objective of conducting stakeholder participations surveys and ongoing documentation of participation levels is to document the success of community engagement.

<u>Methods</u>

- LAC participation in maintenance and monitoring oversight including holding office, maintenance requests and access provisions
- Minutes will be recorded of meetings of the LAC and details from those meetings will be included in an annual report.

Sampling Schedule

The participation of landowners will be recorded as events occur.

Protocol References and Data Forms

Federal Interagency Stream Restoration Working Group (FISRWP) (2001) *Stream Corridor Restoration: Principles, Processes, and Practices; Part II.* <u>http://www.nrcs.usda.gov/technical/stream_restoration/newtofc.htm</u>

REPORTING

As described in the *Napa River Rutherford Reach Restoration Project Maintenance Plan*, following completion of annual maintenance activities, the LAC will prepare a report documenting work completed that year, associated costs, remaining budget, and adequacy of funding to complete required maintenance. The results of streambank erosion and instream structure persistence monitoring conducted as part of the maintenance surveys will also be included in the annual maintenance program report. The results of the additional monitoring conducted to evaluate progress toward meeting the desired outcomes for aquatic and riparian habitat quality will be summarized in separate reports issued in the same year that monitoring of those features was conducted. The reports will document the year's monitoring activities; monitoring results; overall site progress; and any remedial actions taken during the year. It is anticipated that monitoring will occur in the late-spring or early-summer, after flows in the channel have receded and vegetation has leafed out. Monitoring reports will be completed and submitted to the agencies for review by November 1 of each year that additional monitoring has been conducted.

The Phase 1 and 2 monitoring report will include the following specific components.

- A cover and title page with the Corps permit number.
- An *Executive Summary*.
- An *Introduction* that provides background on the project and identifies restoration objectives, performance indicators, and performance standards.
- A summary of the monitoring methods and discussion of any modifications made to the monitoring methods since the previous monitoring period.
- A summary and analysis of the monitoring results, including an evaluation of conditions relative to success criteria and the overall development of restored areas.
- A discussion of remedial measures identified and implemented following the previous monitoring period and a summary of the effectiveness of the remedial measures that were implemented.

DATA MANAGEMENT

It is anticipated that the Flood District will function as the organizational sponsor for the archiving of digital and physical copies of all field data sheets, photodocumentation, GIS layers, and reports associated with the project.

All final reports shall also be filed with the Napa Watershed Information Center and Conservancy of Napa County (<u>http://www.napawatersheds.org</u>) for access through their website. The monitoring reports with also be linked to the San Francisco Bay Data Commons.

Monitoring data will be recorded on standardized data sheets developed by the District in coordination with the Napa County Resource Conservation District and landowner representatives. Data sheets, aerial photographs, and GPS units will be used to document

monitoring results and identify the need for any remedial actions. The results of the survey will be compiled into a report and submitted to the resource and regulatory agencies for review.

REFERENCES

- Allen-Diaz, B., R.D. Jackson, J.W. Bartolome, K.W. Tate, and L.G. Oates. (2004) Long-term grazing study in spring-fed wetlands reveals management tradeoffs. California Agriculture 58:3. American Rivers, 2003. Defending the Clean Water Act: Resources, <u>http://www.amrivers.org/waterquality/streammiles.htm.</u>
- Andrews, G., and L. Townsend. (2000) Stream*A*Syst: A tool to help you examine stream conditions on your property. Oregon State University Extension Service, EM-8761, Corvallis, OR.
- Bain, M.B., T.C. Hughes, and K.K. Arend. (1999) Trends in methods for assessing freshwater habitats. Fisheries 24(4):16-21.
- Barbour, M.T., and J.B. Stribling (1991)

Use of habitat assessment in evaluating the biological integrity of stream communities. In G. Gibosn (ed), Biological Criteria: Research and Regulation, Proceedings of a Symposium, 12-13 December 1990, Arlington, Virginia. USEPA, Office of Water, EPA-440/5-91/005, Washington, D.C.

Barbour, M.T., and J.B. Stribling. (1994)

A techinique for assessing stream habitat structure. Pages 156-178 in Proc. of Riparian Ecosystems of the Humid U.S.: Functions, Values, and Management. March 15-18, 1993, Atlanta, GA, National Association of Conservation Districts, Washington, D.C.

- Barbour, M.T., Gerritsen, J., Snyder, B.D., and Stribling, J.B. (1999)
 Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. 2nd edition. EPA 841-B-99-002. Office of Water, US Environmental Protection Agency, Washington D.C.
 <u>http://www.epa.gov/owowwtr1/monitoring/rbp/index.html.</u>
- Bauer, S.B., and S.C. Ralph. (2001)Strengthening the use of aquatic habitat indicators in Clean Water Act programs.Fisheries 26(6): 14-25.
- Benke, A.C. (1990)

A perspective on America's vanishing streams. Journal of the American Benthological Society 9(1):77-78.

Bernhardt, E.S., M.A. Palmer, J.D. Allan, G. Alexander, K. Barnas, S. Brooks, J. Carr, S. Clayton, C. Dahm, J. Follstad-Shah, D. Galat, S. Gloss, P. Goodwin, D. Hart, B. Hassett, R. Jenkinson, S. Katz, G.M Kondolf, P.S. Lake, r. Lave, J.L. Meyer, T.K. O'Donnell, L. Pagano, B. Powell, and E. Sudduth. (2005)
Synthesizing U.S. River Restoration Efforts. Science 308: 5722. p. 636-637.

BLM (Bureau of Land Management). (1996)

Sampling vegetation attributes. BLM National Applied Resources Center. BLM technical Briggs, M. K., B. A. Roundy, and W. W. Shaw. (1994)

Trial and error: assessing the effectiveness of riparian revegetation in Arizona. Restoration and Management Notes 12:160-167.

Bunte, Kristin; Abt, Steven R. (2001)

Sampling surface and subsurface particle-size distributions in wadable gravel-and cobblebed streams for analyses in sediment transport, hydraulics, and streambed monitoring. <u>http://www.fs.fed.us/rm/pubs/rmrs_gtr74.html</u>

BURP TAC. (1999)

Beneficial Use Reconnaissance Project: 1999, Workplan for Wadeable Streams. BURP Technical Advisory Committee, Idaho Division of Environmental Quality. Boise, ID.

California Association of Resource Conservation District (CARCD). (~2001) Flow Fact Sheet. in: Guidelines for Citizen Monitors: Products of the 2000-2001 Technical Advisory Council on Citizen Monitoring. Prepared in collaboration with the Wild On Watershed Program and the Clean Water Team for the Citizen Monitoring Program of the State Water Resources Control Board, Sacramento, CA. http://www.swrcb.ca.gov/nps/docs/cwtguidance/4110fs.pdf

CDF (CA Department of Forestry). (2005) Cal-Veg LCMMP Vegetation Data.

Choi, Y.D. (2004)

Theories for ecological restoration in changing environment: toward 'futuristic' restoration. Ecological Research 19: 75-81.

Clark, M.J., M.C.A. Laidlaw, S.C. Ryneveld, and M.I. Ward. (1996)

Estimating sampling variance and local environmental heterogeneity for both known and estimated analytical variance. Chemosphere 32:1133-1151.

Climate Source. (2001)

Climate Mapping with PRISM.

Collins, B. (2008)

Coastal Restoration Monitoring and Evaluation Program Qualitative Monitoring Forms. California Department of Fish and Game, Fort Bragg, California. <u>http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/</u>

(Will be incorporated into Flosi et al. CDFG Stream Restoration Manual Chapter 8)

Channel Bank Reconstruction and Bank Stabilization (CB)

Pre-Treatment Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effect iveness_Monitoring/Checklists/2a%20CB_Pre_ChannelBankReconstruction_200 8.pdf

Implementation Form http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Imple mentation_Monitoring/Checklists/2%20CB_Imp_ChannelBankReconstruction_2
008.pdf

Post-Treatment Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effect iveness_Monitoring/Checklists/2b%20CB_Post_ChannelBankReconstruction_20 08.pdf

Instream Habitat and Bank Restoration (IN)

Pre-Treatment Form Instructions

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effect iveness_Monitoring/Instructions/1a%20IN_Pre_Checklist_Instructions_2008.pdf

Pre-Treatment Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effect iveness_Monitoring/Checklists/1a%20IN_Pre_InstreamHab_2008.pdf

Implementation Form Instructions

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Imple mentation_Monitoring/Instructions/1%20IN_Imp_Checklist_Instructions_2008.p df

Implementation Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Imple mentation_Monitoring/Checklists/1%20IN_Imp_InstreamHab_2008.pdf

Instream Habitat and Bank Restoration – Post-Treatment Form Instructions

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effect iveness_Monitoring/Instructions/1b%20IN_Post_Checklist_Instructions_2008.pdf

Post-Treatment Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effect iveness_Monitoring/Checklists/1b%20IN_Post_InstreamHab_2008.pdf

Revegetation Treatments (RT)

Pre-Treatment Form Instructions

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effect iveness_Monitoring/Instructions/7a%20RT_Pre_Checklist_Instructions_2008.pdf

Pre-Treatment Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effect iveness_Monitoring/Checklists/7a%20RT_Pre_Revegetation_2008.pdf Implementation Form Instructions

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Imple mentation_Monitoring/Instructions/7%20RT_Imp_Checklist_Instructions_2008.p df

Implementation Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Imple mentation_Monitoring/Checklists/7%20RT_Imp_Revegetation_2008.pdf

Post-Treatment Form Instructions

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effect iveness_Monitoring/Instructions/7b%20RT_Post_Checklist_Instructions_2008.pd f

Post-Treatment Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effect iveness_Monitoring/Checklists/7b%20RT_Post_Revegetation_2008.pdf

Upslope Stabilization and Delivery Prevention (US)

Pre-Treatment Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effect iveness_Monitoring/Checklists/14a%20US_Pre_UpslopeStabilization_2008.pdf

Post-Treatment Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effect iveness_Monitoring/Checklists/14b%20US_Post_UpslopeStabilization_2008.pdf

Vegetation Control & Removal (VC)

Pre-Treatment Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008 Effectiveness_Monitoring/Checklists/8a VC_Pre_VegetationControl_2008.pdf

Implementation Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Imple mentation_Monitoring/Checklists/8%20VC_Imp_VegetationControl_2008.pdf

Post-Treatment Form

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effect iveness_Monitoring/Checklists/8b%20VC_Post_VegetationControl_2008.pdf

Implementation Monitoring

Annual Summary

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Imple mentation_Monitoring/Summary_Forms/4%20Annual_Imp_Monitoring_Summar y_2008.pdf

General Form Instructions

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/General%20M onitoring%20Instructions_2008.pdf

Summary Form Submission Instructions

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Imple mentation_Monitoring/Instructions/Imp_Mon_Instructions_08.pdf

Structure Rating Definitions

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Imple mentation_Monitoring/Supporting_Documents/Rating_Definitions_2008.pdf

Riparian-Instream Summary

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Imple mentation_Monitoring/Summary_Forms/2%20Riparian-Instream_SITE_Summary_2008.pdf

Monitoring Evaluation and File QA/QC

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Effect iveness_Monitoring/Summary_Forms/M&E_File_Checklist_2008.pdf

Forms

Photo Description

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Imple mentation_Monitoring/Supporting_Documents/Photo_Description_Form_2008.p df

Restoration Site Sketch

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Imple mentation_Monitoring/Supporting_Documents/Site_Sketch_2008.pdf

Codes

Qualitative Monitoring Features

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Imple mentation_Monitoring/Supporting_Documents/Checklist_Letter_Codes_2008.pdf

Treatment Types

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Imple mentation_Monitoring/Supporting_Documents/Treatment_Type_Codes_2008.pdf

Vegetation Species

http://ftp.dfg.ca.gov/public/FRGP/Qualitative_Monitoring_Forms/2008%20Imple mentation_Monitoring/Supporting_Documents/Plant_Species_Codes_2008.pdf

Cover et al. (2008)

Quantitative linkages among sediment supply, streambed fine sediment, and benthic macroinvertebrates in northern California streams. University of California, Berkeley. J. N. Am. Benthol. Soc., 2008, 27(1):135–149,_ 2008 by The North American Benthological Society, DOI: 10.1899/07–032.1, Published online: 15 January 2008

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. (1979) Classification of Wetlands and Deepwater Habitats of the United States. USFWS, Office of Biological Services, FWS/OBS-79/31, Washington, D.C.

CRP (Circuit Rider Productions, Inc). (2004) California Salmonid Stream Habitat Restoration Manual: Part XI Riparian Habitat Restoration. Produced for California Department of Fish and Game 126p.

Dahm, C.N., Cummins, K.W., Valett, H.M. & Coleman, R.L. (1995) An ecosystem view of the restoration of the Kissimmee River. Restoration Ecology, **3**, 225–238.

Daly, C., G.H. Taylor, and W.P. Gibson. (1997)The PRISM approach to mapping precipitation and temperature. In: Proc., 10th AMS Conference on Applied Climatology, Amer.

Dolloff, C.A., D.G. Hankin, and G.H. Reeves. (1993)
 Basinwide estimation of habitat and fish populations in streams. General Technical
 Report SE-83. Ashville, North Carolina: U.S. Department of Agriculture, Forest Service,
 Southeastern Forest Experiment Station. 25pgs.
 http://www.srs.fs.usda.gov/pubs/viewpub.jsp?index=1764

Duffy, W. (2005)

Protocols for Monitoring the Response of Anadromous Salmon and Steelhead to Watershed Restoration in California. Draft prepared for the California Department of Fish and Game Salmon and Steelhead Trout Restoration Account. California Cooperative Fish Research Unit, Humboldt State University. Arcata, California. 79 pgs.

Dunne, T., and L.B. Leopold. (1978)

Water in Environmental Planning. W.H. Freeman and Company, NY. 818 pp.

Echeverria, J.D., P. Barrow, and R. Roos-Collins. (1989)

Rivers at Risk: The Concerned Citizen's Guide to Hydropower. Island Press, Washington, D.C. 217 pp.

English Nature. (2002)

Objective setting and condition monitoring within woodland sites of special scientific interest. English Nature Research Reports No. 472. Northminster House, Peterborough PEI 1UA.

http://www.english-nature.org.uk/pubs/publication/PDF/ENRR472.pdf

Falk, D.A., M.A. Palmer, and J.B. Zedler (ed.). (2006)

Foundations in Restoration Ecology. Island Press. Washington, D.C.

FIREMON. (2003a)

Fire Effects Monitoring and Inventory Protocol: Integrated Sampling Stragtegy. Joint Fire Science Program. U.S. Department of the Interior and U.S.D.A Forest Service. Figures by Courtney Crouch.

http://frames.nbii.gov/portal/server.pt?open=512&objID=286&PageID=492&cached=tru e&mode=2&userID=2

FIREMON. (2003b)

Fire Effects Monitoring and Inventory Protocol: Sampling Methods. Joint Fire Science Program. U.S. Department of the Interior and U.S.D.A Forest Service. Figures by Courtney Crouch. <u>http://frames.nbii.gov/portal/server.pt?open=512&objID=286&&PageID=490&mode=2</u>

&in_hi_userid=2&cached=true

Fitzpatrick, F.A., I.R. Waite, P.J. D'Arconte, M.R. Meador, M.A. Maupin, and M.A. Gurtz. (1998)

Revised Methods for Characterizing Stream Habitat in the National Water- Quality Assessment Program. Water-Resources Investigation Report 98-4052, U.S. Geologic Survey, Raleigh, NC.

Flosi, G., S. Downie, J. Hopelain, M. Bird, R. Coey, and B. Collins / CDFG (1998) California Salmonid Stream Habitat Restoration Manual, Third Edition. Sacramento, California, California Department of Fish and Game, Inland Fisheries Division. <u>http://www.dfg.ca.gov/nafwb/pubs/1998/manual3.pdf</u>

Fore, L.S. and W. Bollman. (2002)

Evaluation of Idaho's Habitat Index for Wadeable Streams, Chapter 5 in C.S. Grafe (ed.), Idaho Small Stream Ecological Assessment Framework: An Integrated Approach. Idaho Department of Environmental Quality. Boise, ID. Freeze, R.A. and J.A. Cherry. (1979)

Groundwater. Prentice Hall, Englewood cliffs, New Jersey.

Frissell, C.A., and R.K. Nawa. (1992)

Incidences and causes of physical failure of artificial habitat structures in stream of western Oregon and Washington. North American Journal of Fisheries Management 12.

Gaffney, K. (2008)

Riparian Habitat Assessment Protocol.

Gardali, T. Aaron L. Holmes, Stacy L. Small, Nadar Nur, Geoffrey R. Geupel and Gregory H. Gulet. (2006)

Abundance patterns of landbirds in restored and remnant riparian forests on the Sacramento River, California, U.S.A. Restoration Ecology 14: 3.

Gauch, Jr., H.G. (1982)

Multivariate Analysis in Community Ecology. Cambridge university Press, New York. 298 pp.

Gerstein, J.M. (2005)

Monitoring the Effectiveness of Instream Habitat Restoration. University of California, Center for Forestry, Berkeley, California. 45 pgs. http://forestry.berkeley.edu/comp_proj/DFG/Monitoring%20the%20Effectiveness%20of

%20Instream%20Habitat%20Restoration.pdf

Gerstein, J.M. and R.R. Harris. (2005)

Protocol for Monitoring the Effectiveness of Bank Stabilization Restoration. University of California, Center for Forestry, Berkeley, CA. 24 pgs. <u>http://www.cnr.berkeley.edu/forestry/comp_proj/DFG/Monitoring%20the%20Effectiven</u> ess%20of%20Bank%20Stabilization%20Restorati.pdf

Gerstein, J.M. and S.D. Kocher. (2005)

Photographic Monitoring of Salmonid Habitat Restoration Projects. University of California, Center for Forestry, Berkeley, CA. 21 pp. <u>http://www.cnr.berkeley.edu/forestry/comp_proj/DFG/Photographic%20Monitoring%20</u> <u>of%20Salmonid%20Habitat%20March%202005.pdf</u>

Gerstein, J.M., S.D. Kocher and W. Stockard. (2005) Documenting Salmonid Habitat Restoration Project Locations. University of California, Center for Forestry, Berkeley, CA. 22 pgs. <u>http://www.cnr.berkeley.edu/forestry/comp_proj/DFG/Documenting%20Salmonid%20H</u> <u>abitat%20Restoration%20March%202005.pdf</u>

Griggs, F. Thomas and Golet, Gregory H. (2002)

Riparian valley oak (Quercus lobata) forest restoration on the middle Sacramento River, California In: Standiford, Richard B., et al, tech. editor. Proceedings of the Fifth Symposium on Oak Woodlands: Oaks in California's Challenging Landscape. Gen. Tech. Rep. PSW-GTR-184, Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture: 543- 550. Hannaford, M.J., and V.H. Resh. (1995)

Variability in macroinvertebrate rapid assessment surveys and habitat assessments in a northern California stream. Journal of the North American Benthological Society 14(3):430-439.

Hannaford, M.J., M.T. Barbour, and V.H. Resh. (1997)

Training reduces observer variability in visual-based assessments of stream habitat. Journal of the North American Benthological Society 16(4):853-860.

Hansen, W.F. (2001)

Identifying stream types and management implications. Forest Ecology and Management 143:39-46.

Harding, J.S., E. F. Benfield, P. V. Bolstad, G. S. Helfman, and E. B. D. Jones, III. (1998) Stream biodiversity: The ghost of land use past, Proceedings of the National Academy of Sciences USA 95(25): 14843–14847.

Harrelson, Cheryl C., C.L. Rawlins, John P. Potyondy. (1994)

Stream channel reference sites: an illustrated guide to field technique. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 pp. <u>http://www.fs.fed.us/rm/pubs_rm/rm_gtr245.pdf</u>

Harris, R.R. (1987)

Occurrence of vegetation on geomorphic surfaces in the active floodplain of a California alluvial stream. American Midland Naturalist 118: 2.

Harris, R.R. (1999)

Defining reference conditions for restoration of riparian plant communities: examples from California, USA. Environmental Management. 24: 55-63.

Harris, R.R., S.D. Kocher, J.M. Gerstein and C. Olson. (2005) Monitoring the Effectiveness of Riparian Vegetation Restoration. University of California, Center for Forestry, Berkeley, CA. 33 pp. <u>http://www.cnr.berkeley.edu/forestry/comp_proj/DFG/Monitoring%20the%20Effectiven</u> ess%20of%20Riparian%20Vegetation%20Restorat.pdf

Hawkes, H.A. (1975)

River zonation and classification In B.A. Whitton (ed.) River Ecology, University of California Press, Berkeley, CA.

Hayes, G. et al (2008)

Napa River, Rutherford Reach, Restoration Phase 1, Reaches 1 and 2, Pre-Project Monitoring Survey, Prepared for the Napa County Resource Conservation District, December 3, 2008. 33 pp.

Hayslip, G.A. (1993)

EPA Region 10 in-stream biological monitoring handbook. USEPA Region 10, EPA/910/9-92-013, Seattle, WA.

Herlihy, A., P. Kaufmann, L. Reynolds, J. Li, and E.G. Robison. (1997)
Developing Indicators of Ecological Condition in the Willamette Basin. pp. 275-282 In
A. Laenen and D. Dunnette (eds). River Quality: Dynamics and Restoration. Lewis
Publishers, CRC Press, Boca Raton, FL.

 Herrick, Jeffrey E., Justin W. Van Zee, Kris M. Havstad, Laura M. Burkett and Walter G. Whitford. (2005)
 Monitoring Manual for Grassland, Shrubland and Savannah Ecosystems: Volume I – Quick Start. USDA-ARS Jornada Experimental Range, Las Cruces, NM. <u>http://californiarangeland.ucdavis.edu/Publications%20pdf/Quick_Start.pdf</u>

Herrick, Jeffrey E., Justin W. Van Zee, Kris M. Havstad, Laura M. Burkett and Walter G.
 Whitford. (2005)
 Monitoring Manual for Grassland, Shrubland and Savannah Ecosystems: Volume 2 –

Design, supplementary methods and interpretation. http://californiarangeland.ucdavis.edu/Publications%20pdf/Volume_II.pdf

Hickman, J.C.(ed.). (1993)

The Jepson Manual to Higher Plants of California. University of California Press. Berkeley and Los Angles, California.

Hilton, S. and T.E. Lisle. (1993)

Measuring the fraction of pool volume filled with fine sediment. Research Note PSW-RN-414. Pacific Southwest Research Station, U.S. Forest Service. 11 pp.

Hobbs, R.J. (1993)

Can revegetation assist in the conservation of biodiversity in agricultural landscapes? Pacific Conservation Biology 1: 29-38.

Hobbs, R.J., and D.A. Norton. (1996)

Towards a conceptual framework for restoration ecology. Restoration Ecology 4: 93-110.

Interagency Technical Reference. (1996)

Sampling vegetation attributes. U.S.D.A., U.S. Forest Service, Natural Resources Conservation Service, and Grazing Land Technology Institute. US Department of the Interior, Bureau of Land Management – National Applied Resource Sciences Center, P.O. Box 25407, Denver, CO 80225-0047. BLM/RS/ST-96/002+1730. 163 pages.

Jelinski, D.E., and P.A. Kulakow. (1996)

The conservation reserve program: opportunities for research in landscape-scale restoration. Restoration & Management Notes 14:2. 137-139.

Johnson, P.A., and T.M. Heil. (1996)

Uncertainty in estimating bankfull conditions. Water Resources Bulletin 32:1283-1291.

Jones, B.E., T.H. Rickman, A. Vazquez, Y. Sado and K. W. Tate. (2005) Removal of encroaching conifers to regenerate degraded aspen stands in the Sierra Nevada. Restoration Ecology 13: 2. Jones, P. Roger, T.A. O'Neil, and C. Barrett. (2001)

Inventory and Monitoring of Salmon Habitat in the Pacific Northwest: Directory and Synthesis of Protocols for Management/Research and Volunteers in Washington, Oregon, Idaho, Montana, and British Columbia. Washington Department of Fish and Wildlife, Olympia, WA. 212 pp.

Kauffman, J. B., R. L. Beschta, N. Otting, and D. Lytjen. (1997) An ecological perspective of riparian and stream restoration in the Western United States. Fisheries 22:12-24.

Kaufmann, P.R., and E.G. Robison. (1998)

Physical Habitat Characterization, Section 7 in J.M. Lazorchak et al. (eds). EMAP-Surface Waters: Field Operations and Methods for Measuring the Ecological Condition of Wadeable Streams. USEPA, EPA/620/R-94/004F, Washington, D.C.

Kaufmann, P.R., P. Levine, E.G. Robison, C. Seeliger, and D.V. Peck. (1999) Quantifying Physical Habitat in Streams. USEPA, EPA/620/R-99/003, Washington, D.C.

 Klemm, D.J., and J.M. Lazorchak (eds.). (1994)
 Environmental Monitoring and Assessment Program 1994 Field Operations Manual for Streams. USEPA Office of Research and Development, EPA/620/R-94/004, Cincinnati, Ohio.

Kocher, S.D. and Harris, R.R. (2005) Qualitative Monitoring of Fisheries Habitat Restoration. University of California, Center for Forestry, Berkeley, California. 166 pgs. <u>http://forestry.berkeley.edu/comp_proj/DFG/Qualitative%20Monitoring%20of%20Fisher</u> <u>ies%20Habitat%20Restoration%20Marc.pdf</u>

Kocher, S.D. and R. Harris. (2007)

Riparian Vegetation. Forest Stewardship Series 10. Division of Agriculture and Natural Resources Publication 8240.

Kondolf, G. M. (1995)

Five elements for effective evaluation of stream restoration. Restoration Ecology 3(2):133-136.

Kondolf, G. M., E.R. Micheli. (1995)

Evaluating stream restoration projects. Environmental Management, V19(N1):1-15.

Kondolf, G.M., M.W. Smeltzer, and S.F. Railsback. (2001)

Design and performance of a channel reconstruction project in a coastal California gravel-bed stream. Environmental Management 28: 6.

Kondolf, M. (2004)

From monitoring to evaluation: learning more from river restoration projects. Salmonid Restoration Federation 2004 Conference. Davis, Ca.

Lawler, D.M. 1992.

Process dominance in bank erosion systems, In Carling, P.A. & Petts, G.E. (Eds), Lowland Floodplain Rivers: Geomorphological Perspectives, John Wiley, Chichester, 117-143.

Lawler, D.M. 1995.

The impact of scale on the processes of channel-side sediment supply: a conceptual model, In Osterkamp, W.R. (Eds), Effects of scale on the interpretation & management of sediment & water quality, International Association of Hydrological Sciences Publications No. 226, 175-184.

- Lazorchak, J.M., D.J. Klemm, and D.V Peck (eds). (1998) Environmental Monitoring and Assessment Program-Surface Waters: Field Operations and Methods for Measuring the Ecological Condition of Wadeable Streams. USEPA, EPA/620/R- 94/004F, Washington, D.C.
- Lennox , M., D. Lewis, K. Tate, J. Harper, S. Larson, R. Jackson. (2007) Riparian Revegetation Evaluation on California's North Coast Ranches. University of CaliforniaCooperative Extension. <u>http://ucce.ucdavis.edu/files/filelibrary/2161/39706.pdf</u>
- Leopold, L.B., M.G. Wolman, and J.P. Miller. (1964) Fluvial Processes in Geomorphology. W.H. Freeman & Company, San Francisco.
- Lindig-Cisneros, R., and J.B. Zedler. (2000) Restoring urban habitats: a comparative study. Ecological Restoration 18:3.

Lisle, Thomas E. (1987)

Using "residual depths" to monitor pool depths independently of discharge. Res. Note PSW-394. Berkeley, CA: Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture; 4 p. http://www.fs.fed.us/psw/rsl/projects/water/Lisle87.pdf

- Long, J.S., and J. Freese. (2006) Regression Models for Categorical Dependent Variables Using Stata. STATA Press. College Station, Texas.
- MacDonald, Lee, Alan W. Smart, and Robert C. Wissmar. (1991) Monitoring Guidelines to Evaluate Effects of Forestry Activities on Streams in the Pacific Northwest and Alaska. EPA/910/9-91-001. May 1991.
- McIver, J., and L. Starr. (2001) Restoration of degraded lands in the Columbia River basin: passive vs. active approaches. Forest Ecology and Management 153: 15-18.
- Meyer, J.L., and J.B. Wallace. (2001)
 Lost linkages and lotic ecology: rediscovering small streams," Chapter 14 in M.C. Press,
 N.J. Huntly, and S. Levin (eds) Ecology: Achievement and Challenge. Blackwell
 Science. Oxford, UK.

Montgomery, D.R., and J.M. Buffington. (1993)

Channel classification, prediction of channel response, and assessment of channel condition. TFW-SH10-93-002, Washington Department of Natural Resources, Olympia, WA. 84 pp. 41

Montgomery ,David R. and MacDonald, Lee H. (2002, February) Diagnostic Approach to Stream Channel Assessment and Monitoring. Journal of the American Water Resources Association. Vol. 38. No. 1.

Mosley, M.P. (1987)

"The classification and characterization of rivers," In K. Richards (ed.) River Channels, Environment and Process. Basil Blackwell, NY.

Mulder, B., B. Noon, T. Spies, M. Raphael, C. Palmer, A. Olsen, G. Reeves, H. Welsh. (1999) The strategy and design of the effectiveness monitoring program for the Northwest Forest Plan. Gen. Tech. Rep. PNW-GTR-437. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 138 p.

National Biological Information Infrastructure http://assessmentmethods.nbii.gov/cm_method_list.jsp.

Newson, M.D., M.J. Clark, D.A. Sear, and A. Brookes. (1998)

The geomorphological basis for classifying rivers, Aquatic Conservation: Marine and Freshwater Ecosystems (8):415-430.

Nielsen, D.M. (1991)

Practical handbook of ground-water monitoring. Lewis Publishers, Inc., Chelsea, Michigan.

Nossaman, S., M. Lennox, D. Lewis, P. Olin. (2007)

Quantitative Effectiveness Monitoring of Bank Stabilization and Riparian Vegetation Restoration: A Field Evaluation of Protocols. University of California Cooperative Extension.

http://ucce.ucdavis.edu/files/filelibrary/2161/36783.pdf

NRC. (1992)

Restoration of Aquatic Ecosystems: Science, Technology, and Public Policy. National Research Council, National Academy Press. Washington, D.C. 552 pp.

NRCS. (2001)

Stream Corridor Inventory and Assessment Techniques: A guide to site, project, and landscape approaches suitable for local conservation programs. Watershed Science Institute Technical Report, USDA Natural Resources Conservation Service, Washington, D.C. 30 pp.

NRCS USDA (1998)

Stream Corridor Restoration: Principles, Processes, and Practices. By the Federal Interagency Stream Restoration Working Group (15 Federal agencies of the US govt).

GPO Item No. 0120-A; SuDocs No. A 57.6/2:EN 3/PT.653. http://www.nrcs.usda.gov/technical/stream_restoration/PDFFILES/ALL-SCRH-08-01.pdf

Opperman, J., and A. Merenlender. (2003)

Factors influencing the success of riparian restoration in the Russian River basin: deer, sheep, and hydrology. Pages 357-365 in P. M. Faber, ed. California

Opperman, J.J. and A.M. Merenlender. (2004)

The effectiveness of riparian restoration for improving instream fish habitat in four hardwood-dominated California streams. North American Journal of Fisheries Management 24: 822-834.

Opperman, J.J., K.O. Lohse, C. Brooks, N.M. Kelly and A.M. Merenlender. (2005) Influence of land use on fine sediment in salmonid spawning gravels within the Russian River Basin, California. Canadian Journal of Fishery Aquatic Science 62: 2740-2751.

Palmer, M.A., E.S. Bernhardt, J. D. Allan, P.S. Lake, G. Alexander, S. Brooks, J. Carr, S. Clayton, C.N. Dahm, J. Follstad Shah, D. L. Galat, S. G. Loss, P. Goodwin, D.D. Hart, B. Hassett, R. Jenkinson, G.M. Kondolf, R. Lave, J.L. Meyer, T.K. O'Donnell, L. Pagano and E. Sudduth. (2005)
Standards for ecologically successful river restoration. British Ecological Society, Journal of Applied Ecology, 42, 208-217.

Paulsen, S.G., D.P. Larsen, P.R. Kaufmann, T.R. Whittier, J.R. Baker, D.V. Peck, J. McGue, D. Stevens, J. Stoddard, R.M. Hughes, D. McMullen, J. Lazorchak, and W. Kinney. (1991) Environmental Monitoring and Assessment Program (EMAP) Surface Waters Monitoring and Research Strategy - Fiscal Year 1991. USEPA, EPA 600/3-91/022, Washington, D.C.

The RCE: A Riparian, Channel, and Environmental Inventory for small streams in the agricultural landscape, Freshwater Biology 27:295-306. Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross, and R.M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. USEPA Assessment and Watershed Protection Division, EPA-440-4-89- 001, Washington, D.C.

 Platts, W.S., W.F. Megahan, and G.W. Minshall. (1983)
 Methods for Evaluating Stream, Riparian, and Biotic Conditions. USDA Forest Service Intermountain Forest and Range Experiment Station, General Technical Report INT-138, Ogden, UT. 70 pp.

 Poole, G.C., C.A. Frissell, and S.C. Ralph. (1997)
 In-stream habitat unit classification: Inadequacies for monitoring and some consequences for management. Journal of the American Water Resources Association 33(4): 879-896.

Pruitt, B.A. 2003. Uses of turbidity by States and Tribes. (2003)

Petersen, Jr., R.C. (1992)

In J.R. Gray and G.D. Glysson (eds.) Proceedings of the Federal Interagency Workshop on Turbidity and other Sediment Surrogates, April 30-May 2, 2002, Reno, NV. USGS Circular 1250. Reston, VA.

- Ralph, C. J., G. R. Geupel,.; P. Pyle, T. E. Martin, D. F. DeSante. (1993)
 Handbook of field methods for monitoring landbirds. Gen. Tech. Rep. PSW-GTR-144www. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture; 41 p. http://www.fs.fed.us/psw/publications/documents/gtr-144/
- Ramsey, M.H., M. Thompson, and M. Hale. (1992)
 Objective evaluation of precision requirements for geochemistry analysis using robust analysis of variance. Journal of Geochemical Exploration 44:23-36.
- Reeve, T., J. Lichatowich, W. Towey, and A. Duncan. (2006) Building Science and Accountability into Community-based Restoration: Can a New Funding Approach Facilitate Effective and Accountable Restoration? Fisheries 31:1. pp.17-24.
- Riparian Revegetation Evaluation 38 Summary Report
- Riparian Systems: Processes and Floodplain Management, Ecology, and Restoration. (2001) Riparian Habitat and Floodplains Conference Proceedings. Riparian Habitat Joint Venture, Sacramento, CA.
- Roni, P. (2005ed.)

Monitoring Stream and Watershed Restoration. Bethesda, MD, American Fisheries Society. 350 pp.

- Roper, B.B., and D.L. Scarnecchia. (1995)
 Observer variability in classifying habitat types in stream surveys. North American Journal of Fisheries Management 15:49-53.
- Roper, B.B., J.L. Kershner, E. Archer, R.Henderson, and N. Bouwes. (2002)
 An evaluation of physical stream habitat attributes used to monitor streams. Journal of the American Water Resources Association 38(6):1637-1646.

Rosgen, D. (1996)

Applied River Morphology. Wildland Hydrology, Pagosa Springs, Colorado.

Rosgen, D.L. (1994)

A classification of natural rivers. Catena 22:169-199.

Ruiz-Jaen, M.C., and T.M. Aide. (2005)

Restoration success: how is it being measured? Restoration Ecology 13: 3.

Schumm, S.A., M.D. Harvey, and C.C. Watson. (1984)

Incised Channels Morphology Dynamics, and Control. Water Resources Publications, Littleton, CO. 200 pp. Simon, A. 1989. A model of channel response in disturbed alluvial channels. Earth Surface Processes and Landforms 14(1):11-26.

- Shilling, F., S. Sommarstrom, R. Kattelmann, B. Washburn, J. Florsheim and R. Henly. (2005) California Watershed Assessment Manual: Volume I. Prepared for the California Resources Agency and the California Bay-Delta Authority. <u>http://cwam.ucdavis.edu</u>
- Simon, A. and C.R. Hupp, (1986) Channel Evolution in Modified Tennessee Streams. In Proceedings of the 4th Federal Inter-Agency Sedimentation Conference, 2:71-82.

 Simonson, T.D., J. Lyons, and P.D. Kanehl. (1993)
 Guidelines for Evaluating Fish Habitat in Wisconsin Streams. Gen. Tech. Rpt NC-164, USFS North Central Experiment Station, St. Paul, MN. 36 pp.

Sparks, J., J. Townsend, T. Hagman, and D. Messer. (2003b.) Stream assessment protocol for headwater streams in the Eastern Kentucky Coalfield region. Aquatic Resources News: A Regulatory Newsletter 2(1):2-5.

Sparks, J., T. Hagman, D. Messer, and J. Townsend. (2003a.) Eastern Kentucky stream assessment protocol: Utility in making mitigation decisions. Aquatic Resources News: A Regulatory Newsletter 2(2):4-10.

Stauffer, J.C. and R.M. Goldstein. (1997)

Comparison of three qualitative habitat indices and their applicability to prairie streams. North American Journal of Fisheries Management 17:348-361.

Strahler, A.N. (1952)

Dynamic basis of geomorphology. Geological Society of America Bulletin 63:923-938.

SWAMP Water Quality Project Data Online <u>http://www.bdat.ca.gov/Php/Data_Retrieval/data_retrieval_by_category_Projects.php?cat_egory_code=16&category_name=Water+Quality.</u>

SWRCB (State water resources Control Board). (2007)

The Clean Water Team (CWT) Guidance Compendium for Watershed Monitoring and Assessment.

http://www.swrcb.ca.gov/nps/cwtguidance.html

Tate, K.W. (1995a.)

Streamflow. Rangeland Watershed Program Fact Sheet #38. Division of Agriculture and Natural Resources.

http://californiarangeland.ucdavis.edu/Publications%20pdf/FS38.pdf

Tate, K.W. (1995b.)

Monitoring Streamflow. Rangeland Watershed Program Fact Sheet #39. Division of Agriculture and Natural Resources. http://californiarangeland.ucdavis.edu/Publications%20pdf/FS39.pdf

- Tate, K.W., David F. Lile, Donald L. Lancaster, Marni L. Porath, Julie A. Morrison, and Yukako Sado. (2005a.) Graphical analysis facilitates evaluation of stream-temperature monitoring data. California Agriculture: Vol. 59: No. 3, Page 153. http://repositories.cdlib.org/anrcs/californiaagriculture/v59/n3/p153
- Tate, K.W., David F. Lile, Donald L. Lancaster, Marni L. Porath, Julie A. Morrison, and Yukako Sado. (2005b.) Statistical analysis of monitoring data aids in prediction of stream temperature. California Agriculture: Vol. 59: No. 3, Page 161. http://repositories.cdlib.org/anrcs/californiaagriculture/v59/n3/p161
- Thayer, G.W., T.A. McTigue, R.J. Salz, D.H. Merkey, F.M. Burrows, P.F. Gayaldo. (2005) Science-Based Restoration Monitoring of Coastal Habitats, Volume Two: Tools for Monitoring Coastal Habitats. NOAA Coastal Ocean Program Decision Analysis Series No. 23. NOAA National Centers for Coastal Ocean Science, Silver Springs, MD. 628pp. plus appendices.

http://coastalscience.noaa.gov/ecosystems/estuaries/restoration_monitoring.html

TNRCC. (1999)

"Stream Habitat Assessment Procedures," Chapter 8 In Surface Water Quality Monitoring Procedures Manual, GI-252, Water Quality Division, Texas Environmental Quality Commission (formerly Texas Natural Resources Conservation Commission), Austin, TX.

- UC Cooperative Extension Monitoring Riparian Revegetation 19
- USDA Forest Service Pacific Southwest Region (2003, September, October and November) Stream Monitoring Administrative Study [SMAS] Field Guide: Protocols and Methods Klamath National Forest Pilot Study.
- USGS. (United States Geological Survey). variously dated (2003-2007) National field manual for the collection of water-quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chaps. A1-A9. http://pubs.water.usgs.gov/twri9A.
- USACE and USEPA (undated)

Model Compensatory Mitigation Checklist for Aquatic Resource Impacts Under the Corps Regulatory Program Pursuant to Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act, undated Memorandum to the Field, Washington, D.C. 8 pp

http://www.mitigationactionplan.gov/actionitem.html

USACE (2003)

Model "Operational Guidelines for Creating or Restoring Wetlands that are Ecologically Self-Sustaining" for Aquatic Resource Impacts Under the Corps Regulatory Program Pursuant to Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act. Memorandum to the Field, Washington, D.C., 10 pp. <u>http://www.mitigationactionplan.gov/actionitem.html</u>

USDA Forest Service Pacific Southwest Region. (2003)

Stream Monitoring Administrative Study [SMAS] Field Guide:Protocols and Methods, Klamath National Forest Pilot Study.

USDA (2005) Frazier, J.W., et al

Stream Condition Inventory Technical Guide. USDA Forest Service, Pacific Southwest Region – Ecosystem Conservation Staff. Vallejo, CA 111pp. <u>http://www.fs.fed.us/r5/publications/water_resources/sci/techguide-v5-08-2005-a.pdf</u>

USDA. (2006)

Integrated Sampling Strategy (ISS) Guide. U.S. Department of the Interior and U.S.D.A. Forest Service General Tehncial Report RMRS-GTR-164-CD. <u>http://frames.nbii.gov/portal/server.pt?open=512&objID=286&&PageID=490&mode=2</u> <u>&in_hi_userid=2&cached=true</u>

USEPA. (1998)

Water quality criteria and standards plan – Priorities for the future. USEPA, Office of Water, EPA-822-R-98-003, Washington, DC.

Vermont Agency of Natural Resources (2003)

Vermont Stream Geomorphic Assessment Protocol Handbooks. Vermont Agency of Natural Resources, May 2003, Waterbury, VT.

Phase 3 Handbook: Survey Assessment

```
http://www.anr.state.vt.us/dec//waterq/rivers/docs/assessmenthandbooks/rv_weblinkpgphase3.pdf
```

Appendix A – Field Forms

http://www.anr.state.vt.us/dec//waterq/rivers/docs/assessmenthandbooks/rv_apxap hase3fieldforms.pdf

Wang, L. T.D. Simonson, and J. Lyons. (1996)

Accuracy and precision of selected stream habitat estimates. North American Journal of Fisheries Management 16:340-347.

Ward, T.A., K.W. Tate, E.R. Atwill, D.F. Lile, D.L. Lancaster, N. McDougald, S. Barry, R.S. Ingram, M.A. George, W. Jensen, W.E. Frost, R. Phillips, G.G. Markegard, and S. Larson. (2003a.)
A comparison of three visual assessments of riparian and stream health. Journal of Soil and Water Conservation 58: 2.

Ward, T.A., K.W. Tate, and E.R. Atwill. (2003b.)

Guidelines for monitoring the establishment of riparian grazing systems. Rangeland Management Series Publication 8094. University of California Division of Agriculture and Natural Resources.

http://anrcatalog.ucdavis.edu.

Washington State Department of Natural Resources (2007, November)

Watershed Analysis Manual Version 4.0.

http://www.dnr.wa.gov/Publications/fp_wsa_manual_section06.pdf

- Washington State Department of Natural Resources (2008) Forest Practices Board Watershed Analysis Manual <u>http://www.dnr.wa.gov/ResearchScience/Topics/WatershedAnalysis/Pages/fp_watershed</u> <u>analysis_manual.aspx</u>
- Wehren, R., T.J. Barber, E. Engber, and P. Higgins. (2002) Stream restoration techniques evaluation project. Mendocino County Resource Conservation District.

Winward, Alma H. / USDA (2000)

Monitoring the Vegetation Resources in Riparian Areas, Ogden, UT. United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-47, April 2000, 49pp.

Wolman, G.P. (1954)

A method for sampling coarse river-bed material. Transactions of the American Geophysical Union 35:951-956.

Zedler, J.B. (1996)

Ecological issues in wetland mitigation: an introduction to the forum. Ecological Applications 6: 33-37.

Zedler, J.B., and J.C. Callaway. (1999)

Tracking wetland trajectory: do mitigation sites follow desired trajectories? Restoration Ecology 7:1.

APPENDIX A: RESTORATION EVALUATION BY REACH

Reach 1

The aim of the Monitoring Plan is also to evaluate the success of these specific restoration goals in **Reach 1**:

Pollutant Load / Erosion Reduction

• Bank toe protection at high flows from installed toe logs.

Stream Channel Geometry, Capacity, & Stability

- Persistence of the created low-level bankfull (1.5 year flood) terraces.
- Improved geomorphic definition of the low-flow channel from installed toe logs.
- Narrowed low-flow channel from installed spider log structures.
- Inundation of the reconnected remnant side channel during the bankfull (1.5 year) flood event.
- Inundation of the reconnected side channel on the right (west) bank during the bankfull (1.5 year) flood event.

Aquatic Habitat Quality

- Increase in channel roughness from installed bench logs.
- Increase in sediment deposition from installed bench logs.
- Increased fisheries habitat quality from installed spider and toe logs.
- Increased bed material sorting from installed spider log structures.
- Increased hydraulic complexity from installed off-branch cover.
- Increased habitat complexity from installed spider and toe logs.

Riparian / Floodplain Habitat Quality

- Success of native riparian plantings on the created low-level terraces.
- Success of native riparian plantings on the graded terraces.
- Increased percent of native versus invasive plant species in re-vegetated areas.

Reach 2

The aim of the Monitoring Plan is also to evaluate the success of these specific restoration goals in **Reach 2**:

Pollutant Load / Erosion Reduction

- Increased bank stability by native riparian plantings between the top of the streambank and the toe of the new berm.
- Stabilization of the previously severely eroded and failing portions of the left (east) bank by bank protection treatments at the downstream end of Reach 2.

Stream Channel Geometry, Capacity, & Stability

- Persistence of the created low-level bankfull (1.5 year flood) terraces.
- Trace the migration of the thalweg knickpoint upstream through the Huichica saprolite channel bed.

Aquatic Habitat Quality

- Increased fisheries habitat quality from installed spider logs.
- Increased hydraulic complexity from rock placed to protect portions of the bank toe.
- Increased habitat complexity from installed spider logs.
- Increased instream and overhead cover from rock placed to protect portions of the bank toe.

Riparian / Floodplain Habitat Quality

- Success of native riparian plantings on the created low-level terraces.
- Success of native riparian plantings on the graded terraces.
- Success of native riparian plantings between the top of the streambank and the toe of the new earthen setback berm constructed on the west bank.
- Increased sediment deposition and recruitment of riparian vegetation by bank protection treatments installed on the east bank at the downstream end of Reach 2.

Reach 3

The aim of the Monitoring Plan is also to evaluate the success of these specific restoration goals in **Reach 3**:

Pollutant Load / Erosion Reduction

• Increased bank stability by native riparian plantings between the top of the streambank and the toe of the new berms.

Aquatic Habitat Quality

• Increased habitat complexity by breakup of existing flatwater habitat by the installed rock grade-control riffle.

Riparian / Floodplain Habitat Quality

• Success of native riparian plantings between the top of the streambank and the toe of the new earthen setback berms constructed on both banks

Reach 4

The aim of the Monitoring Plan is also to evaluate the success of these specific restoration goals in **Reach 4**:

Pollutant Load / Erosion Reduction

- Protection of an existing corporation yard located immediately adjacent to the channel on the right (west) bank by the approximately 350 linear feet of sheet-pile floodwall installed near the downstream portion of Reach 4.
- Stabilization of the channel invert by the installed toe log structures and rock grade control weirs in the upstream portion of Reach 4.

Stream Channel Geometry, Capacity, & Stability

- Persistence of the created low-level bankfull (1.5 year flood) terraces.
- Increased channel sinuosity of the low flow channel by installed branch bundles.
- Improved geomorphic definition of the low-flow channel from installed toe log structures and rock grade control weirs in the upstream portion of Reach 4.

Aquatic Habitat Quality

- Increased cover from installed branch bundles.
- Increased habitat complexity by breakup of existing flatwater habitat by the installed tow log structures and rock grade control weirs in the upstream portion of Reach 4.

- Increased sediment deposition upstream from installed branch bundles.
- Increased fisheries habitat quality from installed spider logs.
- Increased downstream hydraulic complexity from installed branch bundles.
- Increased habitat complexity from installed spider logs.
- Mimic of the cover provided by existing undercut banks by native logs installed parallel to the banks.

Riparian / Floodplain Habitat Quality

- Success of native riparian plantings on the created low-level terraces.
- Success of native riparian plantings between the top of the streambank and the toe of the new earthen setback berms constructed on both banks.

Reach 5

The aim of the Monitoring Plan is also to evaluate the success of these specific restoration goals in **Reach 5**:

Pollutant Load / Erosion Reduction

• Stabilization of the previously eroding meander bend at the upstream portion of Reach 5.

Stream Channel Geometry, Capacity, & Stability

• Persistence of the created low-level bankfull (1.5 year flood) terraces.

Riparian / Floodplain Habitat Quality

- Success of native riparian plantings on the created low-level terraces.
- Success of native riparian plantings on the upper portion of the previously eroding left (east) bank.

Reach 6

The aim of the Monitoring Plan is also to evaluate the success of these specific restoration goals in **Reach 6**:

Pollutant Load / Erosion Reduction

• Increased bank stability by installed toe log structures.

• Increased bank stability by native riparian plantings on the new terraces.

Stream Channel Geometry, Capacity, & Stability

- Persistence of the created mid-level terrace on the steep left (east) bank of the side channel
- Improved geomorphic definition of the low-flow channel from installed toe logs.
- Inundation of the existing side channel during the bankfull (1.5 year) flood event.

Aquatic Habitat Quality

- Increased fisheries habitat quality from installed spider logs.
- Increased habitat complexity from installed spider logs.
- Increased area of high-flow refugia for aquatic species by excavation of the existing side channel to approximately the 1-year flood level.

Riparian / Floodplain Habitat Quality

- Success of native riparian understory plantings on the new terrace.
- Percent preservation of the pre-existing mature riparian overstory.

Reach 7

The aim of the Monitoring Plan is also to evaluate the success of these specific restoration goals in **Reach 7**:

Pollutant Load / Erosion Reduction

• Increased bank stability by installed toe log structures.

Stream Channel Geometry, Capacity, & Stability

- Persistence of the created terraces.
- Increased flood conveyance capacity by slope re-contouring.

Aquatic Habitat Quality

• Increased riffle habitat by the installed rock weir at the downstream portion of Reach 7, extending into the uppermost portion of Reach 8.

Riparian / Floodplain Habitat Quality

- Success of native riparian plantings on the created terraces.
- Success of native riparian plantings along most of the west bank and a portion of the east bank.

Reach8

The aim of the Monitoring Plan is also to evaluate the success of these specific restoration goals in **Reach 8**:

Pollutant Load / Erosion Reduction

- Stabilization of banks from biotechnical installations.
- Increased bank stability from a bench excavated at the bankfull (1.5-year) flood level on the steep right (east) bank?
- Stabilization of a steeply incised, unstable segment of the right (west) bank in the upstream portion of the Reach 8, immediately downstream of the channel complexity improvements installed in Reach 7.
- Stabilization of the previously severely eroding upstream bend in the middle of Reach by bank recontouring.
- Stabilization of the outer side of the left (east) bank meander bend by biotechnical installations (rock armoring supporting native willow plantings).
- Stabilization of previously steep, at-risk on both sides of the main channel by bank stabilization techniques.
- Stabilization of channel incision by the installed rock grade control.
- Reduced bank erosion by removal of the disused concrete bridge abutments.

Stream Channel Geometry, Capacity, & Stability

- Increased channel sinuosity from the installed toe log structures in the upstream portion of Reach 8, immediately downstream of the habitat complexity improvements installed in Reach 7.
- Persistence of created terraces.
- Persistence of the created inset terrace on the right (west inner) meander bank, at approximately the 500-cfs (<1-year) level.

- Persistence of a multi-stage channel by excavation of a bankfull (1.5 year) flood terrace.
- Increase flood capacity by excavation of a bankfull (1.5 year) flood terrace.

Aquatic Habitat Quality

• Increased channel complexity from installed instream structures.

Riparian / Floodplain Habitat Quality

• Success of native riparian plantings in the created buffer.

Reach 9

The aim of the Monitoring Plan is also to evaluate the success of these specific restoration goals in **Reach 9**:

Stream Channel Geometry, Capacity, & Stability

• Persistence of the created low-level bankfull (1.5 year flood) terraces.

Aquatic Habitat Quality

• Increased fisheries habitat quality from installed rock weirs and toe logs in the downstream portion of the reach.

Riparian / Floodplain Habitat Quality

- Success of native riparian plantings on the created low-level terraces.
- Success of native riparian plantings on the top of bank along the new roads to create vegetated buffers.
- Increased percent of native versus invasive plant species in re-vegetated areas.